| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
|
| 2 |
|
conjghm.p |
|
| 3 |
|
conjghm.m |
|
| 4 |
|
conjsubg.f |
|
| 5 |
|
conjnmz.1 |
|
| 6 |
5
|
ssrab3 |
|
| 7 |
|
simpr |
|
| 8 |
6 7
|
sselid |
|
| 9 |
1 2 3 4 5
|
conjnmz |
|
| 10 |
8 9
|
jca |
|
| 11 |
|
simprl |
|
| 12 |
|
simplrr |
|
| 13 |
12
|
eleq2d |
|
| 14 |
|
subgrcl |
|
| 15 |
14
|
ad3antrrr |
|
| 16 |
|
simpllr |
|
| 17 |
1
|
subgss |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
18
|
sselda |
|
| 20 |
1 2 3
|
grpaddsubass |
|
| 21 |
15 16 19 16 20
|
syl13anc |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
1 3
|
grpsubcl |
|
| 24 |
15 19 16 23
|
syl3anc |
|
| 25 |
|
simplr |
|
| 26 |
1 2
|
grplcan |
|
| 27 |
15 24 25 16 26
|
syl13anc |
|
| 28 |
1 2 3
|
grpsubadd |
|
| 29 |
15 19 16 25 28
|
syl13anc |
|
| 30 |
22 27 29
|
3bitrd |
|
| 31 |
|
eqcom |
|
| 32 |
|
eqcom |
|
| 33 |
30 31 32
|
3bitr4g |
|
| 34 |
33
|
rexbidva |
|
| 35 |
34
|
adantlrr |
|
| 36 |
|
ovex |
|
| 37 |
|
eqeq1 |
|
| 38 |
37
|
rexbidv |
|
| 39 |
4
|
rnmpt |
|
| 40 |
36 38 39
|
elab2 |
|
| 41 |
|
risset |
|
| 42 |
35 40 41
|
3bitr4g |
|
| 43 |
13 42
|
bitrd |
|
| 44 |
43
|
ralrimiva |
|
| 45 |
5
|
elnmz |
|
| 46 |
11 44 45
|
sylanbrc |
|
| 47 |
10 46
|
impbida |
|