| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | conjghm.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | conjghm.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | conjsubg.f |  |-  F = ( x e. S |-> ( ( A .+ x ) .- A ) ) | 
						
							| 5 |  | conjnmz.1 |  |-  N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } | 
						
							| 6 | 5 | ssrab3 |  |-  N C_ X | 
						
							| 7 |  | simpr |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. N ) | 
						
							| 8 | 6 7 | sselid |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. X ) | 
						
							| 9 | 1 2 3 4 5 | conjnmz |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) | 
						
							| 10 | 8 9 | jca |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( A e. X /\ S = ran F ) ) | 
						
							| 11 |  | simprl |  |-  ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. X ) | 
						
							| 12 |  | simplrr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> S = ran F ) | 
						
							| 13 | 12 | eleq2d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( A .+ w ) e. ran F ) ) | 
						
							| 14 |  | subgrcl |  |-  ( S e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 15 | 14 | ad3antrrr |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> G e. Grp ) | 
						
							| 16 |  | simpllr |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> A e. X ) | 
						
							| 17 | 1 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ X ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> S C_ X ) | 
						
							| 19 | 18 | sselda |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> x e. X ) | 
						
							| 20 | 1 2 3 | grpaddsubass |  |-  ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) | 
						
							| 21 | 15 16 19 16 20 | syl13anc |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( A .+ ( x .- A ) ) = ( A .+ w ) ) ) | 
						
							| 23 | 1 3 | grpsubcl |  |-  ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) | 
						
							| 24 | 15 19 16 23 | syl3anc |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( x .- A ) e. X ) | 
						
							| 25 |  | simplr |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> w e. X ) | 
						
							| 26 | 1 2 | grplcan |  |-  ( ( G e. Grp /\ ( ( x .- A ) e. X /\ w e. X /\ A e. X ) ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) | 
						
							| 27 | 15 24 25 16 26 | syl13anc |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) | 
						
							| 28 | 1 2 3 | grpsubadd |  |-  ( ( G e. Grp /\ ( x e. X /\ A e. X /\ w e. X ) ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) | 
						
							| 29 | 15 19 16 25 28 | syl13anc |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) | 
						
							| 30 | 22 27 29 | 3bitrd |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( w .+ A ) = x ) ) | 
						
							| 31 |  | eqcom |  |-  ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> ( ( A .+ x ) .- A ) = ( A .+ w ) ) | 
						
							| 32 |  | eqcom |  |-  ( x = ( w .+ A ) <-> ( w .+ A ) = x ) | 
						
							| 33 | 30 31 32 | 3bitr4g |  |-  ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> x = ( w .+ A ) ) ) | 
						
							| 34 | 33 | rexbidva |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) | 
						
							| 35 | 34 | adantlrr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) | 
						
							| 36 |  | ovex |  |-  ( A .+ w ) e. _V | 
						
							| 37 |  | eqeq1 |  |-  ( y = ( A .+ w ) -> ( y = ( ( A .+ x ) .- A ) <-> ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) | 
						
							| 38 | 37 | rexbidv |  |-  ( y = ( A .+ w ) -> ( E. x e. S y = ( ( A .+ x ) .- A ) <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) | 
						
							| 39 | 4 | rnmpt |  |-  ran F = { y | E. x e. S y = ( ( A .+ x ) .- A ) } | 
						
							| 40 | 36 38 39 | elab2 |  |-  ( ( A .+ w ) e. ran F <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) | 
						
							| 41 |  | risset |  |-  ( ( w .+ A ) e. S <-> E. x e. S x = ( w .+ A ) ) | 
						
							| 42 | 35 40 41 | 3bitr4g |  |-  ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. ran F <-> ( w .+ A ) e. S ) ) | 
						
							| 43 | 13 42 | bitrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) | 
						
							| 44 | 43 | ralrimiva |  |-  ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) | 
						
							| 45 | 5 | elnmz |  |-  ( A e. N <-> ( A e. X /\ A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) ) | 
						
							| 46 | 11 44 45 | sylanbrc |  |-  ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. N ) | 
						
							| 47 | 10 46 | impbida |  |-  ( S e. ( SubGrp ` G ) -> ( A e. N <-> ( A e. X /\ S = ran F ) ) ) |