| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | conjghm.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | conjghm.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | conjsubg.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 5 |  | conjnmz.1 | ⊢ 𝑁  =  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) } | 
						
							| 6 | 5 | ssrab3 | ⊢ 𝑁  ⊆  𝑋 | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝐴  ∈  𝑁 ) | 
						
							| 8 | 6 7 | sselid | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝐴  ∈  𝑋 ) | 
						
							| 9 | 1 2 3 4 5 | conjnmz | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝑆  =  ran  𝐹 ) | 
						
							| 10 | 8 9 | jca | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 12 |  | simplrr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  ∧  𝑤  ∈  𝑋 )  →  𝑆  =  ran  𝐹 ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝐴  +  𝑤 )  ∈  𝑆  ↔  ( 𝐴  +  𝑤 )  ∈  ran  𝐹 ) ) | 
						
							| 14 |  | subgrcl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 15 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  𝐺  ∈  Grp ) | 
						
							| 16 |  | simpllr | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  𝑋 ) | 
						
							| 17 | 1 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑋 ) | 
						
							| 20 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  ( 𝑥  −  𝐴 ) ) ) | 
						
							| 21 | 15 16 19 16 20 | syl13anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  ( 𝑥  −  𝐴 ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  𝑤 )  ↔  ( 𝐴  +  ( 𝑥  −  𝐴 ) )  =  ( 𝐴  +  𝑤 ) ) ) | 
						
							| 23 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑥  −  𝐴 )  ∈  𝑋 ) | 
						
							| 24 | 15 19 16 23 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  −  𝐴 )  ∈  𝑋 ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  𝑤  ∈  𝑋 ) | 
						
							| 26 | 1 2 | grplcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑥  −  𝐴 )  ∈  𝑋  ∧  𝑤  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴  +  ( 𝑥  −  𝐴 ) )  =  ( 𝐴  +  𝑤 )  ↔  ( 𝑥  −  𝐴 )  =  𝑤 ) ) | 
						
							| 27 | 15 24 25 16 26 | syl13anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐴  +  ( 𝑥  −  𝐴 ) )  =  ( 𝐴  +  𝑤 )  ↔  ( 𝑥  −  𝐴 )  =  𝑤 ) ) | 
						
							| 28 | 1 2 3 | grpsubadd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝑥  −  𝐴 )  =  𝑤  ↔  ( 𝑤  +  𝐴 )  =  𝑥 ) ) | 
						
							| 29 | 15 19 16 25 28 | syl13anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  𝐴 )  =  𝑤  ↔  ( 𝑤  +  𝐴 )  =  𝑥 ) ) | 
						
							| 30 | 22 27 29 | 3bitrd | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  𝑤 )  ↔  ( 𝑤  +  𝐴 )  =  𝑥 ) ) | 
						
							| 31 |  | eqcom | ⊢ ( ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  𝑤 ) ) | 
						
							| 32 |  | eqcom | ⊢ ( 𝑥  =  ( 𝑤  +  𝐴 )  ↔  ( 𝑤  +  𝐴 )  =  𝑥 ) | 
						
							| 33 | 30 31 32 | 3bitr4g | ⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  𝑥  =  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 34 | 33 | rexbidva | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  𝑆 ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  ∃ 𝑥  ∈  𝑆 𝑥  =  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 35 | 34 | adantlrr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  ∧  𝑤  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  𝑆 ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  ∃ 𝑥  ∈  𝑆 𝑥  =  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 36 |  | ovex | ⊢ ( 𝐴  +  𝑤 )  ∈  V | 
						
							| 37 |  | eqeq1 | ⊢ ( 𝑦  =  ( 𝐴  +  𝑤 )  →  ( 𝑦  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) ) | 
						
							| 38 | 37 | rexbidv | ⊢ ( 𝑦  =  ( 𝐴  +  𝑤 )  →  ( ∃ 𝑥  ∈  𝑆 𝑦  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  ∃ 𝑥  ∈  𝑆 ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) ) | 
						
							| 39 | 4 | rnmpt | ⊢ ran  𝐹  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝑆 𝑦  =  ( ( 𝐴  +  𝑥 )  −  𝐴 ) } | 
						
							| 40 | 36 38 39 | elab2 | ⊢ ( ( 𝐴  +  𝑤 )  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝑆 ( 𝐴  +  𝑤 )  =  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 41 |  | risset | ⊢ ( ( 𝑤  +  𝐴 )  ∈  𝑆  ↔  ∃ 𝑥  ∈  𝑆 𝑥  =  ( 𝑤  +  𝐴 ) ) | 
						
							| 42 | 35 40 41 | 3bitr4g | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝐴  +  𝑤 )  ∈  ran  𝐹  ↔  ( 𝑤  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 43 | 13 42 | bitrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝐴  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  →  ∀ 𝑤  ∈  𝑋 ( ( 𝐴  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 45 | 5 | elnmz | ⊢ ( 𝐴  ∈  𝑁  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑤  ∈  𝑋 ( ( 𝐴  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝐴 )  ∈  𝑆 ) ) ) | 
						
							| 46 | 11 44 45 | sylanbrc | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) )  →  𝐴  ∈  𝑁 ) | 
						
							| 47 | 10 46 | impbida | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐴  ∈  𝑁  ↔  ( 𝐴  ∈  𝑋  ∧  𝑆  =  ran  𝐹 ) ) ) |