| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | conjghm.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | conjghm.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | conjsubg.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 5 |  | nsgsubg | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 |  | eqid | ⊢ { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) }  =  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) } | 
						
							| 7 | 6 1 2 | isnsg4 | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) }  =  𝑋 ) ) | 
						
							| 8 | 7 | simprbi | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) }  =  𝑋 ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  →  ( 𝐴  ∈  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) }  ↔  𝐴  ∈  𝑋 ) ) | 
						
							| 10 | 9 | biimpar | ⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) } ) | 
						
							| 11 | 1 2 3 4 6 | conjnmz | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) } )  →  𝑆  =  ran  𝐹 ) | 
						
							| 12 | 5 10 11 | syl2an2r | ⊢ ( ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  𝑆  =  ran  𝐹 ) |