| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnmz.1 | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) } | 
						
							| 2 |  | nmzsubg.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | nmzsubg.3 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 | 2 3 | isnsg | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) ) ) | 
						
							| 5 |  | eqcom | ⊢ ( 𝑁  =  𝑋  ↔  𝑋  =  𝑁 ) | 
						
							| 6 | 1 | eqeq2i | ⊢ ( 𝑋  =  𝑁  ↔  𝑋  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) } ) | 
						
							| 7 |  | rabid2 | ⊢ ( 𝑋  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) }  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) ) | 
						
							| 8 | 5 6 7 | 3bitri | ⊢ ( 𝑁  =  𝑋  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) ) | 
						
							| 9 | 8 | anbi2i | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑁  =  𝑋 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) ) ) | 
						
							| 10 | 4 9 | bitr4i | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑁  =  𝑋 ) ) |