| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnmz.1 | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) } | 
						
							| 2 |  | nmzsubg.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | nmzsubg.3 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | nmznsg.4 | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑁 ) | 
						
							| 5 |  | id | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 | 1 2 3 | ssnmz | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝑁 ) | 
						
							| 7 |  | subgrcl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 8 | 1 2 3 | nmzsubg | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 | 4 | subsubg | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ⊆  𝑁 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ⊆  𝑁 ) ) ) | 
						
							| 12 | 5 6 11 | mpbir2and | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 13 | 1 | ssrab3 | ⊢ 𝑁  ⊆  𝑋 | 
						
							| 14 | 13 | sseli | ⊢ ( 𝑤  ∈  𝑁  →  𝑤  ∈  𝑋 ) | 
						
							| 15 | 1 | nmzbi | ⊢ ( ( 𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 16 | 14 15 | sylan2 | ⊢ ( ( 𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  →  ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 17 | 16 | rgen2 | ⊢ ∀ 𝑧  ∈  𝑁 ∀ 𝑤  ∈  𝑁 ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) | 
						
							| 18 | 4 | subgbas | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  =  ( Base ‘ 𝐻 ) ) | 
						
							| 19 | 9 18 | syl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  =  ( Base ‘ 𝐻 ) ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( ∀ 𝑤  ∈  𝑁 ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 )  ↔  ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) ) ) | 
						
							| 21 | 19 20 | raleqbidv | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( ∀ 𝑧  ∈  𝑁 ∀ 𝑤  ∈  𝑁 ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 )  ↔  ∀ 𝑧  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) ) ) | 
						
							| 22 | 17 21 | mpbii | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ∀ 𝑧  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 24 | 2 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 25 | 24 13 | ssexi | ⊢ 𝑁  ∈  V | 
						
							| 26 | 4 3 | ressplusg | ⊢ ( 𝑁  ∈  V  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢  +   =  ( +g ‘ 𝐻 ) | 
						
							| 28 | 23 27 | isnsg | ⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐻 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐻 )  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑧  +  𝑤 )  ∈  𝑆  ↔  ( 𝑤  +  𝑧 )  ∈  𝑆 ) ) ) | 
						
							| 29 | 12 22 28 | sylanbrc | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ∈  ( NrmSGrp ‘ 𝐻 ) ) |