| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnmz.1 | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) } | 
						
							| 2 |  | nmzsubg.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | nmzsubg.3 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 | 1 | ssrab3 | ⊢ 𝑁  ⊆  𝑋 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ⊆  𝑋 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 2 6 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 8 | 2 3 6 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑧 )  =  𝑧 ) | 
						
							| 9 | 2 3 6 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( 𝑧  +  ( 0g ‘ 𝐺 ) )  =  𝑧 ) | 
						
							| 10 | 8 9 | eqtr4d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑧 )  =  ( 𝑧  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  ( 0g ‘ 𝐺 ) )  ∈  𝑆 ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑧  ∈  𝑋 ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  ( 0g ‘ 𝐺 ) )  ∈  𝑆 ) ) | 
						
							| 13 | 1 | elnmz | ⊢ ( ( 0g ‘ 𝐺 )  ∈  𝑁  ↔  ( ( 0g ‘ 𝐺 )  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  ( 0g ‘ 𝐺 ) )  ∈  𝑆 ) ) ) | 
						
							| 14 | 7 12 13 | sylanbrc | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑁 ) | 
						
							| 15 | 14 | ne0d | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ≠  ∅ ) | 
						
							| 16 |  | id | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Grp ) | 
						
							| 17 | 4 | sseli | ⊢ ( 𝑧  ∈  𝑁  →  𝑧  ∈  𝑋 ) | 
						
							| 18 | 4 | sseli | ⊢ ( 𝑤  ∈  𝑁  →  𝑤  ∈  𝑋 ) | 
						
							| 19 | 2 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑧  +  𝑤 )  ∈  𝑋 ) | 
						
							| 20 | 16 17 18 19 | syl3an | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  →  ( 𝑧  +  𝑤 )  ∈  𝑋 ) | 
						
							| 21 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 22 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑧  ∈  𝑁 ) | 
						
							| 23 | 4 22 | sselid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑧  ∈  𝑋 ) | 
						
							| 24 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑤  ∈  𝑁 ) | 
						
							| 25 | 4 24 | sselid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑤  ∈  𝑋 ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑢  ∈  𝑋 ) | 
						
							| 27 | 2 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋  ∧  𝑢  ∈  𝑋 ) )  →  ( ( 𝑧  +  𝑤 )  +  𝑢 )  =  ( 𝑧  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 28 | 21 23 25 26 27 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  𝑤 )  +  𝑢 )  =  ( 𝑧  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( 𝑧  +  𝑤 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑧  +  ( 𝑤  +  𝑢 ) )  ∈  𝑆 ) ) | 
						
							| 30 | 2 3 21 25 26 | grpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑤  +  𝑢 )  ∈  𝑋 ) | 
						
							| 31 | 1 | nmzbi | ⊢ ( ( 𝑧  ∈  𝑁  ∧  ( 𝑤  +  𝑢 )  ∈  𝑋 )  →  ( ( 𝑧  +  ( 𝑤  +  𝑢 ) )  ∈  𝑆  ↔  ( ( 𝑤  +  𝑢 )  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 32 | 22 30 31 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  ( 𝑤  +  𝑢 ) )  ∈  𝑆  ↔  ( ( 𝑤  +  𝑢 )  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 33 | 2 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑤  ∈  𝑋  ∧  𝑢  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑤  +  𝑢 )  +  𝑧 )  =  ( 𝑤  +  ( 𝑢  +  𝑧 ) ) ) | 
						
							| 34 | 21 25 26 23 33 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑤  +  𝑢 )  +  𝑧 )  =  ( 𝑤  +  ( 𝑢  +  𝑧 ) ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( 𝑤  +  𝑢 )  +  𝑧 )  ∈  𝑆  ↔  ( 𝑤  +  ( 𝑢  +  𝑧 ) )  ∈  𝑆 ) ) | 
						
							| 36 | 2 3 21 26 23 | grpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑢  +  𝑧 )  ∈  𝑋 ) | 
						
							| 37 | 1 | nmzbi | ⊢ ( ( 𝑤  ∈  𝑁  ∧  ( 𝑢  +  𝑧 )  ∈  𝑋 )  →  ( ( 𝑤  +  ( 𝑢  +  𝑧 ) )  ∈  𝑆  ↔  ( ( 𝑢  +  𝑧 )  +  𝑤 )  ∈  𝑆 ) ) | 
						
							| 38 | 24 36 37 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑤  +  ( 𝑢  +  𝑧 ) )  ∈  𝑆  ↔  ( ( 𝑢  +  𝑧 )  +  𝑤 )  ∈  𝑆 ) ) | 
						
							| 39 | 32 35 38 | 3bitrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  ( 𝑤  +  𝑢 ) )  ∈  𝑆  ↔  ( ( 𝑢  +  𝑧 )  +  𝑤 )  ∈  𝑆 ) ) | 
						
							| 40 | 2 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑢  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝑢  +  𝑧 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑧  +  𝑤 ) ) ) | 
						
							| 41 | 21 26 23 25 40 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑢  +  𝑧 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑧  +  𝑤 ) ) ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( 𝑢  +  𝑧 )  +  𝑤 )  ∈  𝑆  ↔  ( 𝑢  +  ( 𝑧  +  𝑤 ) )  ∈  𝑆 ) ) | 
						
							| 43 | 29 39 42 | 3bitrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( 𝑧  +  𝑤 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑢  +  ( 𝑧  +  𝑤 ) )  ∈  𝑆 ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  →  ∀ 𝑢  ∈  𝑋 ( ( ( 𝑧  +  𝑤 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑢  +  ( 𝑧  +  𝑤 ) )  ∈  𝑆 ) ) | 
						
							| 45 | 1 | elnmz | ⊢ ( ( 𝑧  +  𝑤 )  ∈  𝑁  ↔  ( ( 𝑧  +  𝑤 )  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝑋 ( ( ( 𝑧  +  𝑤 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑢  +  ( 𝑧  +  𝑤 ) )  ∈  𝑆 ) ) ) | 
						
							| 46 | 20 44 45 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁  ∧  𝑤  ∈  𝑁 )  →  ( 𝑧  +  𝑤 )  ∈  𝑁 ) | 
						
							| 47 | 46 | 3expa | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑤  ∈  𝑁 )  →  ( 𝑧  +  𝑤 )  ∈  𝑁 ) | 
						
							| 48 | 47 | ralrimiva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  →  ∀ 𝑤  ∈  𝑁 ( 𝑧  +  𝑤 )  ∈  𝑁 ) | 
						
							| 49 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 50 | 2 49 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 51 | 17 50 | sylan2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 52 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑧  ∈  𝑁 ) | 
						
							| 53 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 54 | 51 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑢  ∈  𝑋 ) | 
						
							| 56 | 2 3 53 55 54 | grpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑋 ) | 
						
							| 57 | 2 3 53 54 56 | grpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  ∈  𝑋 ) | 
						
							| 58 | 1 | nmzbi | ⊢ ( ( 𝑧  ∈  𝑁  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  ∈  𝑋 )  →  ( ( 𝑧  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) )  ∈  𝑆  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 59 | 52 57 58 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) )  ∈  𝑆  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 60 | 4 52 | sselid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  𝑧  ∈  𝑋 ) | 
						
							| 61 | 2 3 6 49 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( 𝑧  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 62 | 53 60 61 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑧  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) | 
						
							| 64 | 2 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑧  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋  ∧  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑋 ) )  →  ( ( 𝑧  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( 𝑧  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 65 | 53 60 54 56 64 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( 𝑧  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 66 | 2 3 6 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 67 | 53 56 66 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 68 | 63 65 67 | 3eqtr3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑧  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) )  =  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 69 | 68 | eleq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑧  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) )  ∈  𝑆  ↔  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑆 ) ) | 
						
							| 70 | 2 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋  ∧  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  𝑧 ) ) ) | 
						
							| 71 | 53 54 56 60 70 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  𝑧 ) ) ) | 
						
							| 72 | 2 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑢  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  𝑧 )  =  ( 𝑢  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑧 ) ) ) | 
						
							| 73 | 53 55 54 60 72 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  𝑧 )  =  ( 𝑢  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑧 ) ) ) | 
						
							| 74 | 2 3 6 49 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑧 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 75 | 53 60 74 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑧 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑢  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑧 ) )  =  ( 𝑢  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 77 | 2 3 6 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝑋 )  →  ( 𝑢  +  ( 0g ‘ 𝐺 ) )  =  𝑢 ) | 
						
							| 78 | 53 55 77 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑢  +  ( 0g ‘ 𝐺 ) )  =  𝑢 ) | 
						
							| 79 | 73 76 78 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  𝑧 )  =  𝑢 ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  +  𝑧 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑢 ) ) | 
						
							| 81 | 71 80 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑢 ) ) | 
						
							| 82 | 81 | eleq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  +  𝑧 )  ∈  𝑆  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑢 )  ∈  𝑆 ) ) | 
						
							| 83 | 59 69 82 | 3bitr3rd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑆 ) ) | 
						
							| 84 | 83 | ralrimiva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  →  ∀ 𝑢  ∈  𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑆 ) ) | 
						
							| 85 | 1 | elnmz | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑁  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋  ∧  ∀ 𝑢  ∈  𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  +  𝑢 )  ∈  𝑆  ↔  ( 𝑢  +  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  𝑆 ) ) ) | 
						
							| 86 | 51 84 85 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑁 ) | 
						
							| 87 | 48 86 | jca | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑁 )  →  ( ∀ 𝑤  ∈  𝑁 ( 𝑧  +  𝑤 )  ∈  𝑁  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑁 ) ) | 
						
							| 88 | 87 | ralrimiva | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑧  ∈  𝑁 ( ∀ 𝑤  ∈  𝑁 ( 𝑧  +  𝑤 )  ∈  𝑁  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑁 ) ) | 
						
							| 89 | 2 3 49 | issubg2 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑁  ⊆  𝑋  ∧  𝑁  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑁 ( ∀ 𝑤  ∈  𝑁 ( 𝑧  +  𝑤 )  ∈  𝑁  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑁 ) ) ) ) | 
						
							| 90 | 5 15 88 89 | mpbir3and | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) |