| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnmz.1 | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) } | 
						
							| 2 | 1 | elnmz | ⊢ ( 𝐴  ∈  𝑁  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( 𝐴  ∈  𝑁  →  ∀ 𝑧  ∈  𝑋 ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑧  =  𝐵  →  ( 𝐴  +  𝑧 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝐴  +  𝐵 )  ∈  𝑆 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  +  𝐴 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝑧  +  𝐴 )  ∈  𝑆  ↔  ( 𝐵  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 8 | 5 7 | bibi12d | ⊢ ( 𝑧  =  𝐵  →  ( ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 )  ↔  ( ( 𝐴  +  𝐵 )  ∈  𝑆  ↔  ( 𝐵  +  𝐴 )  ∈  𝑆 ) ) ) | 
						
							| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑧  ∈  𝑋 ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 )  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴  +  𝐵 )  ∈  𝑆  ↔  ( 𝐵  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 10 | 3 9 | sylan | ⊢ ( ( 𝐴  ∈  𝑁  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴  +  𝐵 )  ∈  𝑆  ↔  ( 𝐵  +  𝐴 )  ∈  𝑆 ) ) |