Metamath Proof Explorer


Theorem nmzbi

Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypothesis elnmz.1 N=xX|yXx+˙ySy+˙xS
Assertion nmzbi ANBXA+˙BSB+˙AS

Proof

Step Hyp Ref Expression
1 elnmz.1 N=xX|yXx+˙ySy+˙xS
2 1 elnmz ANAXzXA+˙zSz+˙AS
3 2 simprbi ANzXA+˙zSz+˙AS
4 oveq2 z=BA+˙z=A+˙B
5 4 eleq1d z=BA+˙zSA+˙BS
6 oveq1 z=Bz+˙A=B+˙A
7 6 eleq1d z=Bz+˙ASB+˙AS
8 5 7 bibi12d z=BA+˙zSz+˙ASA+˙BSB+˙AS
9 8 rspccva zXA+˙zSz+˙ASBXA+˙BSB+˙AS
10 3 9 sylan ANBXA+˙BSB+˙AS