Metamath Proof Explorer


Theorem elnmz

Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypothesis elnmz.1 N=xX|yXx+˙ySy+˙xS
Assertion elnmz ANAXzXA+˙zSz+˙AS

Proof

Step Hyp Ref Expression
1 elnmz.1 N=xX|yXx+˙ySy+˙xS
2 oveq2 y=zx+˙y=x+˙z
3 2 eleq1d y=zx+˙ySx+˙zS
4 oveq1 y=zy+˙x=z+˙x
5 4 eleq1d y=zy+˙xSz+˙xS
6 3 5 bibi12d y=zx+˙ySy+˙xSx+˙zSz+˙xS
7 6 cbvralvw yXx+˙ySy+˙xSzXx+˙zSz+˙xS
8 oveq1 x=Ax+˙z=A+˙z
9 8 eleq1d x=Ax+˙zSA+˙zS
10 oveq2 x=Az+˙x=z+˙A
11 10 eleq1d x=Az+˙xSz+˙AS
12 9 11 bibi12d x=Ax+˙zSz+˙xSA+˙zSz+˙AS
13 12 ralbidv x=AzXx+˙zSz+˙xSzXA+˙zSz+˙AS
14 7 13 bitrid x=AyXx+˙ySy+˙xSzXA+˙zSz+˙AS
15 14 1 elrab2 ANAXzXA+˙zSz+˙AS