| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnmz.1 | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 ) } | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  +  𝑦 )  =  ( 𝑥  +  𝑧 ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑥  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  +  𝑥 )  =  ( 𝑧  +  𝑥 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦  +  𝑥 )  ∈  𝑆  ↔  ( 𝑧  +  𝑥 )  ∈  𝑆 ) ) | 
						
							| 6 | 3 5 | bibi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 )  ↔  ( ( 𝑥  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑥 )  ∈  𝑆 ) ) ) | 
						
							| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 )  ↔  ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑥 )  ∈  𝑆 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +  𝑧 )  =  ( 𝐴  +  𝑧 ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  +  𝑧 )  ∈  𝑆  ↔  ( 𝐴  +  𝑧 )  ∈  𝑆 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑧  +  𝑥 )  =  ( 𝑧  +  𝐴 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑧  +  𝑥 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 12 | 9 11 | bibi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑥 )  ∈  𝑆 )  ↔  ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑥 )  ∈  𝑆 )  ↔  ∀ 𝑧  ∈  𝑋 ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) ) | 
						
							| 14 | 7 13 | bitrid | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑦  +  𝑥 )  ∈  𝑆 )  ↔  ∀ 𝑧  ∈  𝑋 ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) ) | 
						
							| 15 | 14 1 | elrab2 | ⊢ ( 𝐴  ∈  𝑁  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝐴  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝐴 )  ∈  𝑆 ) ) ) |