Metamath Proof Explorer


Theorem nmzsubg

Description: The normalizer N_G(S) of a subset S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N=xX|yXx+˙ySy+˙xS
nmzsubg.2 X=BaseG
nmzsubg.3 +˙=+G
Assertion nmzsubg GGrpNSubGrpG

Proof

Step Hyp Ref Expression
1 elnmz.1 N=xX|yXx+˙ySy+˙xS
2 nmzsubg.2 X=BaseG
3 nmzsubg.3 +˙=+G
4 1 ssrab3 NX
5 4 a1i GGrpNX
6 eqid 0G=0G
7 2 6 grpidcl GGrp0GX
8 2 3 6 grplid GGrpzX0G+˙z=z
9 2 3 6 grprid GGrpzXz+˙0G=z
10 8 9 eqtr4d GGrpzX0G+˙z=z+˙0G
11 10 eleq1d GGrpzX0G+˙zSz+˙0GS
12 11 ralrimiva GGrpzX0G+˙zSz+˙0GS
13 1 elnmz 0GN0GXzX0G+˙zSz+˙0GS
14 7 12 13 sylanbrc GGrp0GN
15 14 ne0d GGrpN
16 id GGrpGGrp
17 4 sseli zNzX
18 4 sseli wNwX
19 2 3 grpcl GGrpzXwXz+˙wX
20 16 17 18 19 syl3an GGrpzNwNz+˙wX
21 simpl1 GGrpzNwNuXGGrp
22 simpl2 GGrpzNwNuXzN
23 4 22 sselid GGrpzNwNuXzX
24 simpl3 GGrpzNwNuXwN
25 4 24 sselid GGrpzNwNuXwX
26 simpr GGrpzNwNuXuX
27 2 3 grpass GGrpzXwXuXz+˙w+˙u=z+˙w+˙u
28 21 23 25 26 27 syl13anc GGrpzNwNuXz+˙w+˙u=z+˙w+˙u
29 28 eleq1d GGrpzNwNuXz+˙w+˙uSz+˙w+˙uS
30 2 3 21 25 26 grpcld GGrpzNwNuXw+˙uX
31 1 nmzbi zNw+˙uXz+˙w+˙uSw+˙u+˙zS
32 22 30 31 syl2anc GGrpzNwNuXz+˙w+˙uSw+˙u+˙zS
33 2 3 grpass GGrpwXuXzXw+˙u+˙z=w+˙u+˙z
34 21 25 26 23 33 syl13anc GGrpzNwNuXw+˙u+˙z=w+˙u+˙z
35 34 eleq1d GGrpzNwNuXw+˙u+˙zSw+˙u+˙zS
36 2 3 21 26 23 grpcld GGrpzNwNuXu+˙zX
37 1 nmzbi wNu+˙zXw+˙u+˙zSu+˙z+˙wS
38 24 36 37 syl2anc GGrpzNwNuXw+˙u+˙zSu+˙z+˙wS
39 32 35 38 3bitrd GGrpzNwNuXz+˙w+˙uSu+˙z+˙wS
40 2 3 grpass GGrpuXzXwXu+˙z+˙w=u+˙z+˙w
41 21 26 23 25 40 syl13anc GGrpzNwNuXu+˙z+˙w=u+˙z+˙w
42 41 eleq1d GGrpzNwNuXu+˙z+˙wSu+˙z+˙wS
43 29 39 42 3bitrd GGrpzNwNuXz+˙w+˙uSu+˙z+˙wS
44 43 ralrimiva GGrpzNwNuXz+˙w+˙uSu+˙z+˙wS
45 1 elnmz z+˙wNz+˙wXuXz+˙w+˙uSu+˙z+˙wS
46 20 44 45 sylanbrc GGrpzNwNz+˙wN
47 46 3expa GGrpzNwNz+˙wN
48 47 ralrimiva GGrpzNwNz+˙wN
49 eqid invgG=invgG
50 2 49 grpinvcl GGrpzXinvgGzX
51 17 50 sylan2 GGrpzNinvgGzX
52 simplr GGrpzNuXzN
53 simpll GGrpzNuXGGrp
54 51 adantr GGrpzNuXinvgGzX
55 simpr GGrpzNuXuX
56 2 3 53 55 54 grpcld GGrpzNuXu+˙invgGzX
57 2 3 53 54 56 grpcld GGrpzNuXinvgGz+˙u+˙invgGzX
58 1 nmzbi zNinvgGz+˙u+˙invgGzXz+˙invgGz+˙u+˙invgGzSinvgGz+˙u+˙invgGz+˙zS
59 52 57 58 syl2anc GGrpzNuXz+˙invgGz+˙u+˙invgGzSinvgGz+˙u+˙invgGz+˙zS
60 4 52 sselid GGrpzNuXzX
61 2 3 6 49 grprinv GGrpzXz+˙invgGz=0G
62 53 60 61 syl2anc GGrpzNuXz+˙invgGz=0G
63 62 oveq1d GGrpzNuXz+˙invgGz+˙u+˙invgGz=0G+˙u+˙invgGz
64 2 3 grpass GGrpzXinvgGzXu+˙invgGzXz+˙invgGz+˙u+˙invgGz=z+˙invgGz+˙u+˙invgGz
65 53 60 54 56 64 syl13anc GGrpzNuXz+˙invgGz+˙u+˙invgGz=z+˙invgGz+˙u+˙invgGz
66 2 3 6 grplid GGrpu+˙invgGzX0G+˙u+˙invgGz=u+˙invgGz
67 53 56 66 syl2anc GGrpzNuX0G+˙u+˙invgGz=u+˙invgGz
68 63 65 67 3eqtr3d GGrpzNuXz+˙invgGz+˙u+˙invgGz=u+˙invgGz
69 68 eleq1d GGrpzNuXz+˙invgGz+˙u+˙invgGzSu+˙invgGzS
70 2 3 grpass GGrpinvgGzXu+˙invgGzXzXinvgGz+˙u+˙invgGz+˙z=invgGz+˙u+˙invgGz+˙z
71 53 54 56 60 70 syl13anc GGrpzNuXinvgGz+˙u+˙invgGz+˙z=invgGz+˙u+˙invgGz+˙z
72 2 3 grpass GGrpuXinvgGzXzXu+˙invgGz+˙z=u+˙invgGz+˙z
73 53 55 54 60 72 syl13anc GGrpzNuXu+˙invgGz+˙z=u+˙invgGz+˙z
74 2 3 6 49 grplinv GGrpzXinvgGz+˙z=0G
75 53 60 74 syl2anc GGrpzNuXinvgGz+˙z=0G
76 75 oveq2d GGrpzNuXu+˙invgGz+˙z=u+˙0G
77 2 3 6 grprid GGrpuXu+˙0G=u
78 53 55 77 syl2anc GGrpzNuXu+˙0G=u
79 73 76 78 3eqtrd GGrpzNuXu+˙invgGz+˙z=u
80 79 oveq2d GGrpzNuXinvgGz+˙u+˙invgGz+˙z=invgGz+˙u
81 71 80 eqtrd GGrpzNuXinvgGz+˙u+˙invgGz+˙z=invgGz+˙u
82 81 eleq1d GGrpzNuXinvgGz+˙u+˙invgGz+˙zSinvgGz+˙uS
83 59 69 82 3bitr3rd GGrpzNuXinvgGz+˙uSu+˙invgGzS
84 83 ralrimiva GGrpzNuXinvgGz+˙uSu+˙invgGzS
85 1 elnmz invgGzNinvgGzXuXinvgGz+˙uSu+˙invgGzS
86 51 84 85 sylanbrc GGrpzNinvgGzN
87 48 86 jca GGrpzNwNz+˙wNinvgGzN
88 87 ralrimiva GGrpzNwNz+˙wNinvgGzN
89 2 3 49 issubg2 GGrpNSubGrpGNXNzNwNz+˙wNinvgGzN
90 5 15 88 89 mpbir3and GGrpNSubGrpG