Metamath Proof Explorer


Theorem ssnmz

Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N=xX|yXx+˙ySy+˙xS
nmzsubg.2 X=BaseG
nmzsubg.3 +˙=+G
Assertion ssnmz SSubGrpGSN

Proof

Step Hyp Ref Expression
1 elnmz.1 N=xX|yXx+˙ySy+˙xS
2 nmzsubg.2 X=BaseG
3 nmzsubg.3 +˙=+G
4 2 subgss SSubGrpGSX
5 4 sselda SSubGrpGzSzX
6 simpll SSubGrpGzSwXz+˙wSSSubGrpG
7 subgrcl SSubGrpGGGrp
8 6 7 syl SSubGrpGzSwXz+˙wSGGrp
9 6 4 syl SSubGrpGzSwXz+˙wSSX
10 simplrl SSubGrpGzSwXz+˙wSzS
11 9 10 sseldd SSubGrpGzSwXz+˙wSzX
12 eqid 0G=0G
13 eqid invgG=invgG
14 2 3 12 13 grplinv GGrpzXinvgGz+˙z=0G
15 8 11 14 syl2anc SSubGrpGzSwXz+˙wSinvgGz+˙z=0G
16 15 oveq1d SSubGrpGzSwXz+˙wSinvgGz+˙z+˙w=0G+˙w
17 13 subginvcl SSubGrpGzSinvgGzS
18 6 10 17 syl2anc SSubGrpGzSwXz+˙wSinvgGzS
19 9 18 sseldd SSubGrpGzSwXz+˙wSinvgGzX
20 simplrr SSubGrpGzSwXz+˙wSwX
21 2 3 grpass GGrpinvgGzXzXwXinvgGz+˙z+˙w=invgGz+˙z+˙w
22 8 19 11 20 21 syl13anc SSubGrpGzSwXz+˙wSinvgGz+˙z+˙w=invgGz+˙z+˙w
23 2 3 12 grplid GGrpwX0G+˙w=w
24 8 20 23 syl2anc SSubGrpGzSwXz+˙wS0G+˙w=w
25 16 22 24 3eqtr3d SSubGrpGzSwXz+˙wSinvgGz+˙z+˙w=w
26 simpr SSubGrpGzSwXz+˙wSz+˙wS
27 3 subgcl SSubGrpGinvgGzSz+˙wSinvgGz+˙z+˙wS
28 6 18 26 27 syl3anc SSubGrpGzSwXz+˙wSinvgGz+˙z+˙wS
29 25 28 eqeltrrd SSubGrpGzSwXz+˙wSwS
30 3 subgcl SSubGrpGwSzSw+˙zS
31 6 29 10 30 syl3anc SSubGrpGzSwXz+˙wSw+˙zS
32 simpll SSubGrpGzSwXw+˙zSSSubGrpG
33 simplrl SSubGrpGzSwXw+˙zSzS
34 32 7 syl SSubGrpGzSwXw+˙zSGGrp
35 simplrr SSubGrpGzSwXw+˙zSwX
36 32 33 5 syl2anc SSubGrpGzSwXw+˙zSzX
37 eqid -G=-G
38 2 3 37 grppncan GGrpwXzXw+˙z-Gz=w
39 34 35 36 38 syl3anc SSubGrpGzSwXw+˙zSw+˙z-Gz=w
40 simpr SSubGrpGzSwXw+˙zSw+˙zS
41 37 subgsubcl SSubGrpGw+˙zSzSw+˙z-GzS
42 32 40 33 41 syl3anc SSubGrpGzSwXw+˙zSw+˙z-GzS
43 39 42 eqeltrrd SSubGrpGzSwXw+˙zSwS
44 3 subgcl SSubGrpGzSwSz+˙wS
45 32 33 43 44 syl3anc SSubGrpGzSwXw+˙zSz+˙wS
46 31 45 impbida SSubGrpGzSwXz+˙wSw+˙zS
47 46 anassrs SSubGrpGzSwXz+˙wSw+˙zS
48 47 ralrimiva SSubGrpGzSwXz+˙wSw+˙zS
49 1 elnmz zNzXwXz+˙wSw+˙zS
50 5 48 49 sylanbrc SSubGrpGzSzN
51 50 ex SSubGrpGzSzN
52 51 ssrdv SSubGrpGSN