Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elnmz.1 | |
|
nmzsubg.2 | |
||
nmzsubg.3 | |
||
Assertion | ssnmz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnmz.1 | |
|
2 | nmzsubg.2 | |
|
3 | nmzsubg.3 | |
|
4 | 2 | subgss | |
5 | 4 | sselda | |
6 | simpll | |
|
7 | subgrcl | |
|
8 | 6 7 | syl | |
9 | 6 4 | syl | |
10 | simplrl | |
|
11 | 9 10 | sseldd | |
12 | eqid | |
|
13 | eqid | |
|
14 | 2 3 12 13 | grplinv | |
15 | 8 11 14 | syl2anc | |
16 | 15 | oveq1d | |
17 | 13 | subginvcl | |
18 | 6 10 17 | syl2anc | |
19 | 9 18 | sseldd | |
20 | simplrr | |
|
21 | 2 3 | grpass | |
22 | 8 19 11 20 21 | syl13anc | |
23 | 2 3 12 | grplid | |
24 | 8 20 23 | syl2anc | |
25 | 16 22 24 | 3eqtr3d | |
26 | simpr | |
|
27 | 3 | subgcl | |
28 | 6 18 26 27 | syl3anc | |
29 | 25 28 | eqeltrrd | |
30 | 3 | subgcl | |
31 | 6 29 10 30 | syl3anc | |
32 | simpll | |
|
33 | simplrl | |
|
34 | 32 7 | syl | |
35 | simplrr | |
|
36 | 32 33 5 | syl2anc | |
37 | eqid | |
|
38 | 2 3 37 | grppncan | |
39 | 34 35 36 38 | syl3anc | |
40 | simpr | |
|
41 | 37 | subgsubcl | |
42 | 32 40 33 41 | syl3anc | |
43 | 39 42 | eqeltrrd | |
44 | 3 | subgcl | |
45 | 32 33 43 44 | syl3anc | |
46 | 31 45 | impbida | |
47 | 46 | anassrs | |
48 | 47 | ralrimiva | |
49 | 1 | elnmz | |
50 | 5 48 49 | sylanbrc | |
51 | 50 | ex | |
52 | 51 | ssrdv | |