Metamath Proof Explorer


Theorem isnsg4

Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N=xX|yXx+˙ySy+˙xS
nmzsubg.2 X=BaseG
nmzsubg.3 +˙=+G
Assertion isnsg4 SNrmSGrpGSSubGrpGN=X

Proof

Step Hyp Ref Expression
1 elnmz.1 N=xX|yXx+˙ySy+˙xS
2 nmzsubg.2 X=BaseG
3 nmzsubg.3 +˙=+G
4 2 3 isnsg SNrmSGrpGSSubGrpGxXyXx+˙ySy+˙xS
5 eqcom N=XX=N
6 1 eqeq2i X=NX=xX|yXx+˙ySy+˙xS
7 rabid2 X=xX|yXx+˙ySy+˙xSxXyXx+˙ySy+˙xS
8 5 6 7 3bitri N=XxXyXx+˙ySy+˙xS
9 8 anbi2i SSubGrpGN=XSSubGrpGxXyXx+˙ySy+˙xS
10 4 9 bitr4i SNrmSGrpGSSubGrpGN=X