| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubg.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 5 |
4
|
subgss |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 7 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 9 |
6 8
|
sseqtrrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ⊆ 𝑆 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 11 |
10
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 |
9 12
|
sstrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 |
1
|
oveq1i |
⊢ ( 𝐻 ↾s 𝐴 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) |
| 15 |
|
ressabs |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 16 |
14 15
|
eqtrid |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 17 |
9 16
|
syldan |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 18 |
|
eqid |
⊢ ( 𝐻 ↾s 𝐴 ) = ( 𝐻 ↾s 𝐴 ) |
| 19 |
18
|
subggrp |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) → ( 𝐻 ↾s 𝐴 ) ∈ Grp ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Grp ) |
| 21 |
17 20
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Grp ) |
| 22 |
10
|
issubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝐴 ) ∈ Grp ) ) |
| 23 |
3 13 21 22
|
syl3anbrc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 |
23 9
|
jca |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) |
| 25 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐻 ∈ Grp ) |
| 27 |
|
simprr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 29 |
27 28
|
sseqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 30 |
16
|
adantrl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 31 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) |
| 32 |
31
|
subggrp |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝐴 ) ∈ Grp ) |
| 33 |
32
|
ad2antrl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Grp ) |
| 34 |
30 33
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Grp ) |
| 35 |
4
|
issubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐻 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 𝐻 ↾s 𝐴 ) ∈ Grp ) ) |
| 36 |
26 29 34 35
|
syl3anbrc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 37 |
24 36
|
impbida |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |