| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intssuni |
⊢ ( 𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆 ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ⊆ ∪ 𝑆 ) |
| 3 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
3
|
adantlr |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 6 |
5
|
subgss |
⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 |
4 6
|
syl |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 |
7
|
ralrimiva |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑔 ∈ 𝑆 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 |
|
unissb |
⊢ ( ∪ 𝑆 ⊆ ( Base ‘ 𝐺 ) ↔ ∀ 𝑔 ∈ 𝑆 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 |
2 10
|
sstrd |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 13 |
12
|
subg0cl |
⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 14 |
4 13
|
syl |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑔 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 15 |
14
|
ralrimiva |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑔 ∈ 𝑆 ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 16 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
| 17 |
16
|
elint2 |
⊢ ( ( 0g ‘ 𝐺 ) ∈ ∩ 𝑆 ↔ ∀ 𝑔 ∈ 𝑆 ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 18 |
15 17
|
sylibr |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ( 0g ‘ 𝐺 ) ∈ ∩ 𝑆 ) |
| 19 |
18
|
ne0d |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ≠ ∅ ) |
| 20 |
4
|
adantlr |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 |
|
simprl |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑥 ∈ ∩ 𝑆 ) |
| 22 |
|
elinti |
⊢ ( 𝑥 ∈ ∩ 𝑆 → ( 𝑔 ∈ 𝑆 → 𝑥 ∈ 𝑔 ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑔 ∈ 𝑆 ) → 𝑥 ∈ 𝑔 ) |
| 24 |
21 23
|
sylan |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → 𝑥 ∈ 𝑔 ) |
| 25 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑦 ∈ ∩ 𝑆 ) |
| 26 |
|
elinti |
⊢ ( 𝑦 ∈ ∩ 𝑆 → ( 𝑔 ∈ 𝑆 → 𝑦 ∈ 𝑔 ) ) |
| 27 |
26
|
imp |
⊢ ( ( 𝑦 ∈ ∩ 𝑆 ∧ 𝑔 ∈ 𝑆 ) → 𝑦 ∈ 𝑔 ) |
| 28 |
25 27
|
sylan |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → 𝑦 ∈ 𝑔 ) |
| 29 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 30 |
29
|
subgcl |
⊢ ( ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑔 ∧ 𝑦 ∈ 𝑔 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 31 |
20 24 28 30
|
syl3anc |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 32 |
31
|
ralrimiva |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ∀ 𝑔 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 33 |
|
ovex |
⊢ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ V |
| 34 |
33
|
elint2 |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ↔ ∀ 𝑔 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 35 |
32 34
|
sylibr |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 36 |
35
|
anassrs |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑦 ∈ ∩ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 37 |
36
|
ralrimiva |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 38 |
4
|
adantlr |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 39 |
23
|
adantll |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑔 ∈ 𝑆 ) → 𝑥 ∈ 𝑔 ) |
| 40 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 41 |
40
|
subginvcl |
⊢ ( ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑔 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 42 |
38 39 41
|
syl2anc |
⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑔 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 43 |
42
|
ralrimiva |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ∀ 𝑔 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 44 |
|
fvex |
⊢ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ V |
| 45 |
44
|
elint2 |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ↔ ∀ 𝑔 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 46 |
43 45
|
sylibr |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) |
| 47 |
37 46
|
jca |
⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝑆 ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) |
| 49 |
|
ssn0 |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ( SubGrp ‘ 𝐺 ) ≠ ∅ ) |
| 50 |
|
n0 |
⊢ ( ( SubGrp ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 51 |
|
subgrcl |
⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 52 |
51
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 53 |
50 52
|
sylbi |
⊢ ( ( SubGrp ‘ 𝐺 ) ≠ ∅ → 𝐺 ∈ Grp ) |
| 54 |
5 29 40
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ∩ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ∩ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝑆 ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) ) ) |
| 55 |
49 53 54
|
3syl |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ∩ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ∩ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝑆 ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) ) ) |
| 56 |
11 19 48 55
|
mpbir3and |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |