| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intssuni |
|- ( S =/= (/) -> |^| S C_ U. S ) |
| 2 |
1
|
adantl |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ U. S ) |
| 3 |
|
ssel2 |
|- ( ( S C_ ( SubGrp ` G ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 4 |
3
|
adantlr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 6 |
5
|
subgss |
|- ( g e. ( SubGrp ` G ) -> g C_ ( Base ` G ) ) |
| 7 |
4 6
|
syl |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g C_ ( Base ` G ) ) |
| 8 |
7
|
ralrimiva |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S g C_ ( Base ` G ) ) |
| 9 |
|
unissb |
|- ( U. S C_ ( Base ` G ) <-> A. g e. S g C_ ( Base ` G ) ) |
| 10 |
8 9
|
sylibr |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> U. S C_ ( Base ` G ) ) |
| 11 |
2 10
|
sstrd |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ ( Base ` G ) ) |
| 12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 13 |
12
|
subg0cl |
|- ( g e. ( SubGrp ` G ) -> ( 0g ` G ) e. g ) |
| 14 |
4 13
|
syl |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> ( 0g ` G ) e. g ) |
| 15 |
14
|
ralrimiva |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S ( 0g ` G ) e. g ) |
| 16 |
|
fvex |
|- ( 0g ` G ) e. _V |
| 17 |
16
|
elint2 |
|- ( ( 0g ` G ) e. |^| S <-> A. g e. S ( 0g ` G ) e. g ) |
| 18 |
15 17
|
sylibr |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( 0g ` G ) e. |^| S ) |
| 19 |
18
|
ne0d |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S =/= (/) ) |
| 20 |
4
|
adantlr |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 21 |
|
simprl |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
| 22 |
|
elinti |
|- ( x e. |^| S -> ( g e. S -> x e. g ) ) |
| 23 |
22
|
imp |
|- ( ( x e. |^| S /\ g e. S ) -> x e. g ) |
| 24 |
21 23
|
sylan |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> x e. g ) |
| 25 |
|
simprr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
| 26 |
|
elinti |
|- ( y e. |^| S -> ( g e. S -> y e. g ) ) |
| 27 |
26
|
imp |
|- ( ( y e. |^| S /\ g e. S ) -> y e. g ) |
| 28 |
25 27
|
sylan |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> y e. g ) |
| 29 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 30 |
29
|
subgcl |
|- ( ( g e. ( SubGrp ` G ) /\ x e. g /\ y e. g ) -> ( x ( +g ` G ) y ) e. g ) |
| 31 |
20 24 28 30
|
syl3anc |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> ( x ( +g ` G ) y ) e. g ) |
| 32 |
31
|
ralrimiva |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. g e. S ( x ( +g ` G ) y ) e. g ) |
| 33 |
|
ovex |
|- ( x ( +g ` G ) y ) e. _V |
| 34 |
33
|
elint2 |
|- ( ( x ( +g ` G ) y ) e. |^| S <-> A. g e. S ( x ( +g ` G ) y ) e. g ) |
| 35 |
32 34
|
sylibr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( +g ` G ) y ) e. |^| S ) |
| 36 |
35
|
anassrs |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ y e. |^| S ) -> ( x ( +g ` G ) y ) e. |^| S ) |
| 37 |
36
|
ralrimiva |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S ) |
| 38 |
4
|
adantlr |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 39 |
23
|
adantll |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> x e. g ) |
| 40 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 41 |
40
|
subginvcl |
|- ( ( g e. ( SubGrp ` G ) /\ x e. g ) -> ( ( invg ` G ) ` x ) e. g ) |
| 42 |
38 39 41
|
syl2anc |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> ( ( invg ` G ) ` x ) e. g ) |
| 43 |
42
|
ralrimiva |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. g e. S ( ( invg ` G ) ` x ) e. g ) |
| 44 |
|
fvex |
|- ( ( invg ` G ) ` x ) e. _V |
| 45 |
44
|
elint2 |
|- ( ( ( invg ` G ) ` x ) e. |^| S <-> A. g e. S ( ( invg ` G ) ` x ) e. g ) |
| 46 |
43 45
|
sylibr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( ( invg ` G ) ` x ) e. |^| S ) |
| 47 |
37 46
|
jca |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) |
| 48 |
47
|
ralrimiva |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) |
| 49 |
|
ssn0 |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( SubGrp ` G ) =/= (/) ) |
| 50 |
|
n0 |
|- ( ( SubGrp ` G ) =/= (/) <-> E. g g e. ( SubGrp ` G ) ) |
| 51 |
|
subgrcl |
|- ( g e. ( SubGrp ` G ) -> G e. Grp ) |
| 52 |
51
|
exlimiv |
|- ( E. g g e. ( SubGrp ` G ) -> G e. Grp ) |
| 53 |
50 52
|
sylbi |
|- ( ( SubGrp ` G ) =/= (/) -> G e. Grp ) |
| 54 |
5 29 40
|
issubg2 |
|- ( G e. Grp -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) |
| 55 |
49 53 54
|
3syl |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) |
| 56 |
11 19 48 55
|
mpbir3and |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` G ) ) |