Metamath Proof Explorer


Theorem subsubg

Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypothesis subsubg.h H = G 𝑠 S
Assertion subsubg S SubGrp G A SubGrp H A SubGrp G A S

Proof

Step Hyp Ref Expression
1 subsubg.h H = G 𝑠 S
2 subgrcl S SubGrp G G Grp
3 2 adantr S SubGrp G A SubGrp H G Grp
4 eqid Base H = Base H
5 4 subgss A SubGrp H A Base H
6 5 adantl S SubGrp G A SubGrp H A Base H
7 1 subgbas S SubGrp G S = Base H
8 7 adantr S SubGrp G A SubGrp H S = Base H
9 6 8 sseqtrrd S SubGrp G A SubGrp H A S
10 eqid Base G = Base G
11 10 subgss S SubGrp G S Base G
12 11 adantr S SubGrp G A SubGrp H S Base G
13 9 12 sstrd S SubGrp G A SubGrp H A Base G
14 1 oveq1i H 𝑠 A = G 𝑠 S 𝑠 A
15 ressabs S SubGrp G A S G 𝑠 S 𝑠 A = G 𝑠 A
16 14 15 syl5eq S SubGrp G A S H 𝑠 A = G 𝑠 A
17 9 16 syldan S SubGrp G A SubGrp H H 𝑠 A = G 𝑠 A
18 eqid H 𝑠 A = H 𝑠 A
19 18 subggrp A SubGrp H H 𝑠 A Grp
20 19 adantl S SubGrp G A SubGrp H H 𝑠 A Grp
21 17 20 eqeltrrd S SubGrp G A SubGrp H G 𝑠 A Grp
22 10 issubg A SubGrp G G Grp A Base G G 𝑠 A Grp
23 3 13 21 22 syl3anbrc S SubGrp G A SubGrp H A SubGrp G
24 23 9 jca S SubGrp G A SubGrp H A SubGrp G A S
25 1 subggrp S SubGrp G H Grp
26 25 adantr S SubGrp G A SubGrp G A S H Grp
27 simprr S SubGrp G A SubGrp G A S A S
28 7 adantr S SubGrp G A SubGrp G A S S = Base H
29 27 28 sseqtrd S SubGrp G A SubGrp G A S A Base H
30 16 adantrl S SubGrp G A SubGrp G A S H 𝑠 A = G 𝑠 A
31 eqid G 𝑠 A = G 𝑠 A
32 31 subggrp A SubGrp G G 𝑠 A Grp
33 32 ad2antrl S SubGrp G A SubGrp G A S G 𝑠 A Grp
34 30 33 eqeltrd S SubGrp G A SubGrp G A S H 𝑠 A Grp
35 4 issubg A SubGrp H H Grp A Base H H 𝑠 A Grp
36 26 29 34 35 syl3anbrc S SubGrp G A SubGrp G A S A SubGrp H
37 24 36 impbida S SubGrp G A SubGrp H A SubGrp G A S