Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subsubg.h | |
|
Assertion | subsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsubg.h | |
|
2 | subgrcl | |
|
3 | 2 | adantr | |
4 | eqid | |
|
5 | 4 | subgss | |
6 | 5 | adantl | |
7 | 1 | subgbas | |
8 | 7 | adantr | |
9 | 6 8 | sseqtrrd | |
10 | eqid | |
|
11 | 10 | subgss | |
12 | 11 | adantr | |
13 | 9 12 | sstrd | |
14 | 1 | oveq1i | |
15 | ressabs | |
|
16 | 14 15 | eqtrid | |
17 | 9 16 | syldan | |
18 | eqid | |
|
19 | 18 | subggrp | |
20 | 19 | adantl | |
21 | 17 20 | eqeltrrd | |
22 | 10 | issubg | |
23 | 3 13 21 22 | syl3anbrc | |
24 | 23 9 | jca | |
25 | 1 | subggrp | |
26 | 25 | adantr | |
27 | simprr | |
|
28 | 7 | adantr | |
29 | 27 28 | sseqtrd | |
30 | 16 | adantrl | |
31 | eqid | |
|
32 | 31 | subggrp | |
33 | 32 | ad2antrl | |
34 | 30 33 | eqeltrd | |
35 | 4 | issubg | |
36 | 26 29 34 35 | syl3anbrc | |
37 | 24 36 | impbida | |