| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubg.h |
|
| 2 |
|
subgrcl |
|
| 3 |
2
|
adantr |
|
| 4 |
|
eqid |
|
| 5 |
4
|
subgss |
|
| 6 |
5
|
adantl |
|
| 7 |
1
|
subgbas |
|
| 8 |
7
|
adantr |
|
| 9 |
6 8
|
sseqtrrd |
|
| 10 |
|
eqid |
|
| 11 |
10
|
subgss |
|
| 12 |
11
|
adantr |
|
| 13 |
9 12
|
sstrd |
|
| 14 |
1
|
oveq1i |
|
| 15 |
|
ressabs |
|
| 16 |
14 15
|
eqtrid |
|
| 17 |
9 16
|
syldan |
|
| 18 |
|
eqid |
|
| 19 |
18
|
subggrp |
|
| 20 |
19
|
adantl |
|
| 21 |
17 20
|
eqeltrrd |
|
| 22 |
10
|
issubg |
|
| 23 |
3 13 21 22
|
syl3anbrc |
|
| 24 |
23 9
|
jca |
|
| 25 |
1
|
subggrp |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simprr |
|
| 28 |
7
|
adantr |
|
| 29 |
27 28
|
sseqtrd |
|
| 30 |
16
|
adantrl |
|
| 31 |
|
eqid |
|
| 32 |
31
|
subggrp |
|
| 33 |
32
|
ad2antrl |
|
| 34 |
30 33
|
eqeltrd |
|
| 35 |
4
|
issubg |
|
| 36 |
26 29 34 35
|
syl3anbrc |
|
| 37 |
24 36
|
impbida |
|