Metamath Proof Explorer


Theorem conjnmz

Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x 𝑋 = ( Base ‘ 𝐺 )
conjghm.p + = ( +g𝐺 )
conjghm.m = ( -g𝐺 )
conjsubg.f 𝐹 = ( 𝑥𝑆 ↦ ( ( 𝐴 + 𝑥 ) 𝐴 ) )
conjnmz.1 𝑁 = { 𝑦𝑋 ∣ ∀ 𝑧𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) }
Assertion conjnmz ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → 𝑆 = ran 𝐹 )

Proof

Step Hyp Ref Expression
1 conjghm.x 𝑋 = ( Base ‘ 𝐺 )
2 conjghm.p + = ( +g𝐺 )
3 conjghm.m = ( -g𝐺 )
4 conjsubg.f 𝐹 = ( 𝑥𝑆 ↦ ( ( 𝐴 + 𝑥 ) 𝐴 ) )
5 conjnmz.1 𝑁 = { 𝑦𝑋 ∣ ∀ 𝑧𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) }
6 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
7 6 ad2antrr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → 𝐺 ∈ Grp )
8 5 ssrab3 𝑁𝑋
9 simplr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → 𝐴𝑁 )
10 8 9 sseldi ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → 𝐴𝑋 )
11 eqid ( invg𝐺 ) = ( invg𝐺 )
12 1 11 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( invg𝐺 ) ‘ 𝐴 ) ∈ 𝑋 )
13 7 10 12 syl2anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( invg𝐺 ) ‘ 𝐴 ) ∈ 𝑋 )
14 1 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆𝑋 )
15 14 adantr ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → 𝑆𝑋 )
16 15 sselda ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → 𝑤𝑋 )
17 1 2 grpass ( ( 𝐺 ∈ Grp ∧ ( ( ( invg𝐺 ) ‘ 𝐴 ) ∈ 𝑋𝑤𝑋𝐴𝑋 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) = ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) )
18 7 13 16 10 17 syl13anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) = ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) )
19 eqid ( 0g𝐺 ) = ( 0g𝐺 )
20 1 2 19 11 grprinv ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) = ( 0g𝐺 ) )
21 7 10 20 syl2anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) = ( 0g𝐺 ) )
22 21 oveq1d ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( ( 0g𝐺 ) + 𝑤 ) )
23 1 2 grpass ( ( 𝐺 ∈ Grp ∧ ( 𝐴𝑋 ∧ ( ( invg𝐺 ) ‘ 𝐴 ) ∈ 𝑋𝑤𝑋 ) ) → ( ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) )
24 7 10 13 16 23 syl13anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) )
25 1 2 19 grplid ( ( 𝐺 ∈ Grp ∧ 𝑤𝑋 ) → ( ( 0g𝐺 ) + 𝑤 ) = 𝑤 )
26 7 16 25 syl2anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 0g𝐺 ) + 𝑤 ) = 𝑤 )
27 22 24 26 3eqtr3d ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) = 𝑤 )
28 simpr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → 𝑤𝑆 )
29 27 28 eqeltrd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 )
30 1 2 grpcl ( ( 𝐺 ∈ Grp ∧ ( ( invg𝐺 ) ‘ 𝐴 ) ∈ 𝑋𝑤𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 )
31 7 13 16 30 syl3anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 )
32 5 nmzbi ( ( 𝐴𝑁 ∧ ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) → ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) )
33 9 31 32 syl2anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) )
34 29 33 mpbid ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( ( ( invg𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 )
35 18 34 eqeltrrd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 )
36 oveq2 ( 𝑥 = ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) )
37 36 oveq1d ( 𝑥 = ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( ( 𝐴 + 𝑥 ) 𝐴 ) = ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) 𝐴 ) )
38 ovex ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) 𝐴 ) ∈ V
39 37 4 38 fvmpt ( ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) 𝐴 ) )
40 35 39 syl ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) 𝐴 ) )
41 21 oveq1d ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( ( 0g𝐺 ) + ( 𝑤 + 𝐴 ) ) )
42 1 2 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑤𝑋𝐴𝑋 ) → ( 𝑤 + 𝐴 ) ∈ 𝑋 )
43 7 16 10 42 syl3anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝑤 + 𝐴 ) ∈ 𝑋 )
44 1 2 grpass ( ( 𝐺 ∈ Grp ∧ ( 𝐴𝑋 ∧ ( ( invg𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝑤 + 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) )
45 7 10 13 43 44 syl13anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝐴 + ( ( invg𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) )
46 1 2 19 grplid ( ( 𝐺 ∈ Grp ∧ ( 𝑤 + 𝐴 ) ∈ 𝑋 ) → ( ( 0g𝐺 ) + ( 𝑤 + 𝐴 ) ) = ( 𝑤 + 𝐴 ) )
47 7 43 46 syl2anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 0g𝐺 ) + ( 𝑤 + 𝐴 ) ) = ( 𝑤 + 𝐴 ) )
48 41 45 47 3eqtr3d ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( 𝑤 + 𝐴 ) )
49 48 oveq1d ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝐴 + ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) 𝐴 ) = ( ( 𝑤 + 𝐴 ) 𝐴 ) )
50 1 2 3 grppncan ( ( 𝐺 ∈ Grp ∧ 𝑤𝑋𝐴𝑋 ) → ( ( 𝑤 + 𝐴 ) 𝐴 ) = 𝑤 )
51 7 16 10 50 syl3anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( ( 𝑤 + 𝐴 ) 𝐴 ) = 𝑤 )
52 40 49 51 3eqtrd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = 𝑤 )
53 ovex ( ( 𝐴 + 𝑥 ) 𝐴 ) ∈ V
54 53 4 fnmpti 𝐹 Fn 𝑆
55 fnfvelrn ( ( 𝐹 Fn 𝑆 ∧ ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 )
56 54 35 55 sylancr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 )
57 52 56 eqeltrrd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑤𝑆 ) → 𝑤 ∈ ran 𝐹 )
58 57 ex ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → ( 𝑤𝑆𝑤 ∈ ran 𝐹 ) )
59 58 ssrdv ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → 𝑆 ⊆ ran 𝐹 )
60 6 ad2antrr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → 𝐺 ∈ Grp )
61 simplr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → 𝐴𝑁 )
62 8 61 sseldi ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → 𝐴𝑋 )
63 15 sselda ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → 𝑥𝑋 )
64 1 2 3 grpaddsubass ( ( 𝐺 ∈ Grp ∧ ( 𝐴𝑋𝑥𝑋𝐴𝑋 ) ) → ( ( 𝐴 + 𝑥 ) 𝐴 ) = ( 𝐴 + ( 𝑥 𝐴 ) ) )
65 60 62 63 62 64 syl13anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( ( 𝐴 + 𝑥 ) 𝐴 ) = ( 𝐴 + ( 𝑥 𝐴 ) ) )
66 1 2 3 grpnpcan ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋 ) → ( ( 𝑥 𝐴 ) + 𝐴 ) = 𝑥 )
67 60 63 62 66 syl3anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( ( 𝑥 𝐴 ) + 𝐴 ) = 𝑥 )
68 simpr ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → 𝑥𝑆 )
69 67 68 eqeltrd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( ( 𝑥 𝐴 ) + 𝐴 ) ∈ 𝑆 )
70 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋 ) → ( 𝑥 𝐴 ) ∈ 𝑋 )
71 60 63 62 70 syl3anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( 𝑥 𝐴 ) ∈ 𝑋 )
72 5 nmzbi ( ( 𝐴𝑁 ∧ ( 𝑥 𝐴 ) ∈ 𝑋 ) → ( ( 𝐴 + ( 𝑥 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 𝐴 ) + 𝐴 ) ∈ 𝑆 ) )
73 61 71 72 syl2anc ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( ( 𝐴 + ( 𝑥 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 𝐴 ) + 𝐴 ) ∈ 𝑆 ) )
74 69 73 mpbird ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( 𝐴 + ( 𝑥 𝐴 ) ) ∈ 𝑆 )
75 65 74 eqeltrd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) ∧ 𝑥𝑆 ) → ( ( 𝐴 + 𝑥 ) 𝐴 ) ∈ 𝑆 )
76 75 4 fmptd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → 𝐹 : 𝑆𝑆 )
77 76 frnd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → ran 𝐹𝑆 )
78 59 77 eqssd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑁 ) → 𝑆 = ran 𝐹 )