| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | conjghm.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | conjghm.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | conjsubg.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 5 |  | conjnmz.1 | ⊢ 𝑁  =  { 𝑦  ∈  𝑋  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑦  +  𝑧 )  ∈  𝑆  ↔  ( 𝑧  +  𝑦 )  ∈  𝑆 ) } | 
						
							| 6 |  | subgrcl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 9 | 5 | ssrab3 | ⊢ 𝑁  ⊆  𝑋 | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  𝐴  ∈  𝑁 ) | 
						
							| 11 | 9 10 | sselid | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  𝐴  ∈  𝑋 ) | 
						
							| 12 | 1 8 7 11 | grpinvcld | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 13 | 1 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 15 | 14 | sselda | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  𝑤  ∈  𝑋 ) | 
						
							| 16 | 1 2 7 12 15 11 | grpassd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 )  +  𝐴 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 18 | 1 2 17 8 7 11 | grprinvd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐴  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  𝑤 )  =  ( ( 0g ‘ 𝐺 )  +  𝑤 ) ) | 
						
							| 20 | 1 2 7 11 12 15 | grpassd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  𝑤 )  =  ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 ) ) ) | 
						
							| 21 | 1 2 17 7 15 | grplidd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 0g ‘ 𝐺 )  +  𝑤 )  =  𝑤 ) | 
						
							| 22 | 19 20 21 | 3eqtr3d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 ) )  =  𝑤 ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  𝑤  ∈  𝑆 ) | 
						
							| 24 | 22 23 | eqeltrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 ) )  ∈  𝑆 ) | 
						
							| 25 | 1 2 7 12 15 | grpcld | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 )  ∈  𝑋 ) | 
						
							| 26 | 5 | nmzbi | ⊢ ( ( 𝐴  ∈  𝑁  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 )  ∈  𝑋 )  →  ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 ) )  ∈  𝑆  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 )  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 27 | 10 25 26 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 ) )  ∈  𝑆  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 )  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 28 | 24 27 | mpbid | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝑤 )  +  𝐴 )  ∈  𝑆 ) | 
						
							| 29 | 16 28 | eqeltrrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) )  ∈  𝑆 ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) )  →  ( 𝐴  +  𝑥 )  =  ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  −  𝐴 ) ) | 
						
							| 32 |  | ovex | ⊢ ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  −  𝐴 )  ∈  V | 
						
							| 33 | 31 4 32 | fvmpt | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) )  ∈  𝑆  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  =  ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  −  𝐴 ) ) | 
						
							| 34 | 29 33 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  =  ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  −  𝐴 ) ) | 
						
							| 35 | 18 | oveq1d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  ( 𝑤  +  𝐴 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 36 | 1 2 7 15 11 | grpcld | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝑤  +  𝐴 )  ∈  𝑋 ) | 
						
							| 37 | 1 2 7 11 12 36 | grpassd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  ( 𝑤  +  𝐴 ) )  =  ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) ) ) | 
						
							| 38 | 1 2 17 7 36 | grplidd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑤  +  𝐴 ) )  =  ( 𝑤  +  𝐴 ) ) | 
						
							| 39 | 35 37 38 | 3eqtr3d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  =  ( 𝑤  +  𝐴 ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  −  𝐴 )  =  ( ( 𝑤  +  𝐴 )  −  𝐴 ) ) | 
						
							| 41 | 1 2 3 | grppncan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑤  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑤  +  𝐴 )  −  𝐴 )  =  𝑤 ) | 
						
							| 42 | 7 15 11 41 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝑤  +  𝐴 )  −  𝐴 )  =  𝑤 ) | 
						
							| 43 | 34 40 42 | 3eqtrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  =  𝑤 ) | 
						
							| 44 |  | ovex | ⊢ ( ( 𝐴  +  𝑥 )  −  𝐴 )  ∈  V | 
						
							| 45 | 44 4 | fnmpti | ⊢ 𝐹  Fn  𝑆 | 
						
							| 46 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝑆  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) )  ∈  𝑆 )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  ∈  ran  𝐹 ) | 
						
							| 47 | 45 29 46 | sylancr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑤  +  𝐴 ) ) )  ∈  ran  𝐹 ) | 
						
							| 48 | 43 47 | eqeltrrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑤  ∈  𝑆 )  →  𝑤  ∈  ran  𝐹 ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  ( 𝑤  ∈  𝑆  →  𝑤  ∈  ran  𝐹 ) ) | 
						
							| 50 | 49 | ssrdv | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝑆  ⊆  ran  𝐹 ) | 
						
							| 51 | 6 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  𝐺  ∈  Grp ) | 
						
							| 52 |  | simplr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  𝑁 ) | 
						
							| 53 | 9 52 | sselid | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  𝑋 ) | 
						
							| 54 | 14 | sselda | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑋 ) | 
						
							| 55 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  ( 𝑥  −  𝐴 ) ) ) | 
						
							| 56 | 51 53 54 53 55 | syl13anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( 𝐴  +  ( 𝑥  −  𝐴 ) ) ) | 
						
							| 57 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥  −  𝐴 )  +  𝐴 )  =  𝑥 ) | 
						
							| 58 | 51 54 53 57 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  𝐴 )  +  𝐴 )  =  𝑥 ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑆 ) | 
						
							| 60 | 58 59 | eqeltrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  𝐴 )  +  𝐴 )  ∈  𝑆 ) | 
						
							| 61 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑥  −  𝐴 )  ∈  𝑋 ) | 
						
							| 62 | 51 54 53 61 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  −  𝐴 )  ∈  𝑋 ) | 
						
							| 63 | 5 | nmzbi | ⊢ ( ( 𝐴  ∈  𝑁  ∧  ( 𝑥  −  𝐴 )  ∈  𝑋 )  →  ( ( 𝐴  +  ( 𝑥  −  𝐴 ) )  ∈  𝑆  ↔  ( ( 𝑥  −  𝐴 )  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 64 | 52 62 63 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐴  +  ( 𝑥  −  𝐴 ) )  ∈  𝑆  ↔  ( ( 𝑥  −  𝐴 )  +  𝐴 )  ∈  𝑆 ) ) | 
						
							| 65 | 60 64 | mpbird | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐴  +  ( 𝑥  −  𝐴 ) )  ∈  𝑆 ) | 
						
							| 66 | 56 65 | eqeltrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ∈  𝑆 ) | 
						
							| 67 | 66 4 | fmptd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝐹 : 𝑆 ⟶ 𝑆 ) | 
						
							| 68 | 67 | frnd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  ran  𝐹  ⊆  𝑆 ) | 
						
							| 69 | 50 68 | eqssd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑁 )  →  𝑆  =  ran  𝐹 ) |