| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
|- X = ( Base ` G ) |
| 2 |
|
conjghm.p |
|- .+ = ( +g ` G ) |
| 3 |
|
conjghm.m |
|- .- = ( -g ` G ) |
| 4 |
|
conjsubg.f |
|- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
| 5 |
|
conjnmz.1 |
|- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
| 6 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> G e. Grp ) |
| 8 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 9 |
5
|
ssrab3 |
|- N C_ X |
| 10 |
|
simplr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> A e. N ) |
| 11 |
9 10
|
sselid |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> A e. X ) |
| 12 |
1 8 7 11
|
grpinvcld |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( invg ` G ) ` A ) e. X ) |
| 13 |
1
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 14 |
13
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S C_ X ) |
| 15 |
14
|
sselda |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. X ) |
| 16 |
1 2 7 12 15 11
|
grpassd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) |
| 17 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 18 |
1 2 17 8 7 11
|
grprinvd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( invg ` G ) ` A ) ) = ( 0g ` G ) ) |
| 19 |
18
|
oveq1d |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ w ) = ( ( 0g ` G ) .+ w ) ) |
| 20 |
1 2 7 11 12 15
|
grpassd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ w ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) ) |
| 21 |
1 2 17 7 15
|
grplidd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( 0g ` G ) .+ w ) = w ) |
| 22 |
19 20 21
|
3eqtr3d |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) = w ) |
| 23 |
|
simpr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. S ) |
| 24 |
22 23
|
eqeltrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S ) |
| 25 |
1 2 7 12 15
|
grpcld |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( invg ` G ) ` A ) .+ w ) e. X ) |
| 26 |
5
|
nmzbi |
|- ( ( A e. N /\ ( ( ( invg ` G ) ` A ) .+ w ) e. X ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S <-> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) ) |
| 27 |
10 25 26
|
syl2anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S <-> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) ) |
| 28 |
24 27
|
mpbid |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) |
| 29 |
16 28
|
eqeltrrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S ) |
| 30 |
|
oveq2 |
|- ( x = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) -> ( A .+ x ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) ) |
| 31 |
30
|
oveq1d |
|- ( x = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) -> ( ( A .+ x ) .- A ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) |
| 32 |
|
ovex |
|- ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) e. _V |
| 33 |
31 4 32
|
fvmpt |
|- ( ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) |
| 34 |
29 33
|
syl |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) |
| 35 |
18
|
oveq1d |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ ( w .+ A ) ) = ( ( 0g ` G ) .+ ( w .+ A ) ) ) |
| 36 |
1 2 7 15 11
|
grpcld |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( w .+ A ) e. X ) |
| 37 |
1 2 7 11 12 36
|
grpassd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ ( w .+ A ) ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) ) |
| 38 |
1 2 17 7 36
|
grplidd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( 0g ` G ) .+ ( w .+ A ) ) = ( w .+ A ) ) |
| 39 |
35 37 38
|
3eqtr3d |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( w .+ A ) ) |
| 40 |
39
|
oveq1d |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) = ( ( w .+ A ) .- A ) ) |
| 41 |
1 2 3
|
grppncan |
|- ( ( G e. Grp /\ w e. X /\ A e. X ) -> ( ( w .+ A ) .- A ) = w ) |
| 42 |
7 15 11 41
|
syl3anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( w .+ A ) .- A ) = w ) |
| 43 |
34 40 42
|
3eqtrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = w ) |
| 44 |
|
ovex |
|- ( ( A .+ x ) .- A ) e. _V |
| 45 |
44 4
|
fnmpti |
|- F Fn S |
| 46 |
|
fnfvelrn |
|- ( ( F Fn S /\ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) e. ran F ) |
| 47 |
45 29 46
|
sylancr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) e. ran F ) |
| 48 |
43 47
|
eqeltrrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. ran F ) |
| 49 |
48
|
ex |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( w e. S -> w e. ran F ) ) |
| 50 |
49
|
ssrdv |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S C_ ran F ) |
| 51 |
6
|
ad2antrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> G e. Grp ) |
| 52 |
|
simplr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> A e. N ) |
| 53 |
9 52
|
sselid |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> A e. X ) |
| 54 |
14
|
sselda |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> x e. X ) |
| 55 |
1 2 3
|
grpaddsubass |
|- ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 56 |
51 53 54 53 55
|
syl13anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 57 |
1 2 3
|
grpnpcan |
|- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( ( x .- A ) .+ A ) = x ) |
| 58 |
51 54 53 57
|
syl3anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( x .- A ) .+ A ) = x ) |
| 59 |
|
simpr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> x e. S ) |
| 60 |
58 59
|
eqeltrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( x .- A ) .+ A ) e. S ) |
| 61 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) |
| 62 |
51 54 53 61
|
syl3anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( x .- A ) e. X ) |
| 63 |
5
|
nmzbi |
|- ( ( A e. N /\ ( x .- A ) e. X ) -> ( ( A .+ ( x .- A ) ) e. S <-> ( ( x .- A ) .+ A ) e. S ) ) |
| 64 |
52 62 63
|
syl2anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) e. S <-> ( ( x .- A ) .+ A ) e. S ) ) |
| 65 |
60 64
|
mpbird |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( A .+ ( x .- A ) ) e. S ) |
| 66 |
56 65
|
eqeltrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ x ) .- A ) e. S ) |
| 67 |
66 4
|
fmptd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> F : S --> S ) |
| 68 |
67
|
frnd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ran F C_ S ) |
| 69 |
50 68
|
eqssd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |