Metamath Proof Explorer


Theorem conjnmz

Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x X=BaseG
conjghm.p +˙=+G
conjghm.m -˙=-G
conjsubg.f F=xSA+˙x-˙A
conjnmz.1 N=yX|zXy+˙zSz+˙yS
Assertion conjnmz SSubGrpGANS=ranF

Proof

Step Hyp Ref Expression
1 conjghm.x X=BaseG
2 conjghm.p +˙=+G
3 conjghm.m -˙=-G
4 conjsubg.f F=xSA+˙x-˙A
5 conjnmz.1 N=yX|zXy+˙zSz+˙yS
6 subgrcl SSubGrpGGGrp
7 6 ad2antrr SSubGrpGANwSGGrp
8 5 ssrab3 NX
9 simplr SSubGrpGANwSAN
10 8 9 sselid SSubGrpGANwSAX
11 eqid invgG=invgG
12 1 11 grpinvcl GGrpAXinvgGAX
13 7 10 12 syl2anc SSubGrpGANwSinvgGAX
14 1 subgss SSubGrpGSX
15 14 adantr SSubGrpGANSX
16 15 sselda SSubGrpGANwSwX
17 1 2 grpass GGrpinvgGAXwXAXinvgGA+˙w+˙A=invgGA+˙w+˙A
18 7 13 16 10 17 syl13anc SSubGrpGANwSinvgGA+˙w+˙A=invgGA+˙w+˙A
19 eqid 0G=0G
20 1 2 19 11 grprinv GGrpAXA+˙invgGA=0G
21 7 10 20 syl2anc SSubGrpGANwSA+˙invgGA=0G
22 21 oveq1d SSubGrpGANwSA+˙invgGA+˙w=0G+˙w
23 1 2 grpass GGrpAXinvgGAXwXA+˙invgGA+˙w=A+˙invgGA+˙w
24 7 10 13 16 23 syl13anc SSubGrpGANwSA+˙invgGA+˙w=A+˙invgGA+˙w
25 1 2 19 grplid GGrpwX0G+˙w=w
26 7 16 25 syl2anc SSubGrpGANwS0G+˙w=w
27 22 24 26 3eqtr3d SSubGrpGANwSA+˙invgGA+˙w=w
28 simpr SSubGrpGANwSwS
29 27 28 eqeltrd SSubGrpGANwSA+˙invgGA+˙wS
30 1 2 grpcl GGrpinvgGAXwXinvgGA+˙wX
31 7 13 16 30 syl3anc SSubGrpGANwSinvgGA+˙wX
32 5 nmzbi ANinvgGA+˙wXA+˙invgGA+˙wSinvgGA+˙w+˙AS
33 9 31 32 syl2anc SSubGrpGANwSA+˙invgGA+˙wSinvgGA+˙w+˙AS
34 29 33 mpbid SSubGrpGANwSinvgGA+˙w+˙AS
35 18 34 eqeltrrd SSubGrpGANwSinvgGA+˙w+˙AS
36 oveq2 x=invgGA+˙w+˙AA+˙x=A+˙invgGA+˙w+˙A
37 36 oveq1d x=invgGA+˙w+˙AA+˙x-˙A=A+˙invgGA+˙w+˙A-˙A
38 ovex A+˙invgGA+˙w+˙A-˙AV
39 37 4 38 fvmpt invgGA+˙w+˙ASFinvgGA+˙w+˙A=A+˙invgGA+˙w+˙A-˙A
40 35 39 syl SSubGrpGANwSFinvgGA+˙w+˙A=A+˙invgGA+˙w+˙A-˙A
41 21 oveq1d SSubGrpGANwSA+˙invgGA+˙w+˙A=0G+˙w+˙A
42 1 2 grpcl GGrpwXAXw+˙AX
43 7 16 10 42 syl3anc SSubGrpGANwSw+˙AX
44 1 2 grpass GGrpAXinvgGAXw+˙AXA+˙invgGA+˙w+˙A=A+˙invgGA+˙w+˙A
45 7 10 13 43 44 syl13anc SSubGrpGANwSA+˙invgGA+˙w+˙A=A+˙invgGA+˙w+˙A
46 1 2 19 grplid GGrpw+˙AX0G+˙w+˙A=w+˙A
47 7 43 46 syl2anc SSubGrpGANwS0G+˙w+˙A=w+˙A
48 41 45 47 3eqtr3d SSubGrpGANwSA+˙invgGA+˙w+˙A=w+˙A
49 48 oveq1d SSubGrpGANwSA+˙invgGA+˙w+˙A-˙A=w+˙A-˙A
50 1 2 3 grppncan GGrpwXAXw+˙A-˙A=w
51 7 16 10 50 syl3anc SSubGrpGANwSw+˙A-˙A=w
52 40 49 51 3eqtrd SSubGrpGANwSFinvgGA+˙w+˙A=w
53 ovex A+˙x-˙AV
54 53 4 fnmpti FFnS
55 fnfvelrn FFnSinvgGA+˙w+˙ASFinvgGA+˙w+˙AranF
56 54 35 55 sylancr SSubGrpGANwSFinvgGA+˙w+˙AranF
57 52 56 eqeltrrd SSubGrpGANwSwranF
58 57 ex SSubGrpGANwSwranF
59 58 ssrdv SSubGrpGANSranF
60 6 ad2antrr SSubGrpGANxSGGrp
61 simplr SSubGrpGANxSAN
62 8 61 sselid SSubGrpGANxSAX
63 15 sselda SSubGrpGANxSxX
64 1 2 3 grpaddsubass GGrpAXxXAXA+˙x-˙A=A+˙x-˙A
65 60 62 63 62 64 syl13anc SSubGrpGANxSA+˙x-˙A=A+˙x-˙A
66 1 2 3 grpnpcan GGrpxXAXx-˙A+˙A=x
67 60 63 62 66 syl3anc SSubGrpGANxSx-˙A+˙A=x
68 simpr SSubGrpGANxSxS
69 67 68 eqeltrd SSubGrpGANxSx-˙A+˙AS
70 1 3 grpsubcl GGrpxXAXx-˙AX
71 60 63 62 70 syl3anc SSubGrpGANxSx-˙AX
72 5 nmzbi ANx-˙AXA+˙x-˙ASx-˙A+˙AS
73 61 71 72 syl2anc SSubGrpGANxSA+˙x-˙ASx-˙A+˙AS
74 69 73 mpbird SSubGrpGANxSA+˙x-˙AS
75 65 74 eqeltrd SSubGrpGANxSA+˙x-˙AS
76 75 4 fmptd SSubGrpGANF:SS
77 76 frnd SSubGrpGANranFS
78 59 77 eqssd SSubGrpGANS=ranF