Metamath Proof Explorer


Theorem grprinvd

Description: The right inverse of a group element. Deduction associated with grprinv . (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grplinvd.b 𝐵 = ( Base ‘ 𝐺 )
grplinvd.p + = ( +g𝐺 )
grplinvd.u 0 = ( 0g𝐺 )
grplinvd.n 𝑁 = ( invg𝐺 )
grplinvd.g ( 𝜑𝐺 ∈ Grp )
grplinvd.1 ( 𝜑𝑋𝐵 )
Assertion grprinvd ( 𝜑 → ( 𝑋 + ( 𝑁𝑋 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 grplinvd.b 𝐵 = ( Base ‘ 𝐺 )
2 grplinvd.p + = ( +g𝐺 )
3 grplinvd.u 0 = ( 0g𝐺 )
4 grplinvd.n 𝑁 = ( invg𝐺 )
5 grplinvd.g ( 𝜑𝐺 ∈ Grp )
6 grplinvd.1 ( 𝜑𝑋𝐵 )
7 1 2 3 4 grprinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 + ( 𝑁𝑋 ) ) = 0 )
8 5 6 7 syl2anc ( 𝜑 → ( 𝑋 + ( 𝑁𝑋 ) ) = 0 )