Metamath Proof Explorer


Theorem grprinvd

Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grprinvlem.c φ x B y B x + ˙ y B
grprinvlem.o φ O B
grprinvlem.i φ x B O + ˙ x = x
grprinvlem.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
grprinvlem.n φ x B y B y + ˙ x = O
grprinvd.x φ ψ X B
grprinvd.n φ ψ N B
grprinvd.e φ ψ N + ˙ X = O
Assertion grprinvd φ ψ X + ˙ N = O

Proof

Step Hyp Ref Expression
1 grprinvlem.c φ x B y B x + ˙ y B
2 grprinvlem.o φ O B
3 grprinvlem.i φ x B O + ˙ x = x
4 grprinvlem.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
5 grprinvlem.n φ x B y B y + ˙ x = O
6 grprinvd.x φ ψ X B
7 grprinvd.n φ ψ N B
8 grprinvd.e φ ψ N + ˙ X = O
9 1 3expb φ x B y B x + ˙ y B
10 9 caovclg φ u B v B u + ˙ v B
11 10 adantlr φ ψ u B v B u + ˙ v B
12 11 6 7 caovcld φ ψ X + ˙ N B
13 4 caovassg φ u B v B w B u + ˙ v + ˙ w = u + ˙ v + ˙ w
14 13 adantlr φ ψ u B v B w B u + ˙ v + ˙ w = u + ˙ v + ˙ w
15 14 6 7 12 caovassd φ ψ X + ˙ N + ˙ X + ˙ N = X + ˙ N + ˙ X + ˙ N
16 8 oveq1d φ ψ N + ˙ X + ˙ N = O + ˙ N
17 14 7 6 7 caovassd φ ψ N + ˙ X + ˙ N = N + ˙ X + ˙ N
18 oveq2 y = N O + ˙ y = O + ˙ N
19 id y = N y = N
20 18 19 eqeq12d y = N O + ˙ y = y O + ˙ N = N
21 3 ralrimiva φ x B O + ˙ x = x
22 oveq2 x = y O + ˙ x = O + ˙ y
23 id x = y x = y
24 22 23 eqeq12d x = y O + ˙ x = x O + ˙ y = y
25 24 cbvralvw x B O + ˙ x = x y B O + ˙ y = y
26 21 25 sylib φ y B O + ˙ y = y
27 26 adantr φ ψ y B O + ˙ y = y
28 20 27 7 rspcdva φ ψ O + ˙ N = N
29 16 17 28 3eqtr3d φ ψ N + ˙ X + ˙ N = N
30 29 oveq2d φ ψ X + ˙ N + ˙ X + ˙ N = X + ˙ N
31 15 30 eqtrd φ ψ X + ˙ N + ˙ X + ˙ N = X + ˙ N
32 1 2 3 4 5 12 31 grprinvlem φ ψ X + ˙ N = O