Description: The right inverse of a group element. Deduction associated with grprinv . (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplinvd.b | |- B = ( Base ` G ) |
|
| grplinvd.p | |- .+ = ( +g ` G ) |
||
| grplinvd.u | |- .0. = ( 0g ` G ) |
||
| grplinvd.n | |- N = ( invg ` G ) |
||
| grplinvd.g | |- ( ph -> G e. Grp ) |
||
| grplinvd.1 | |- ( ph -> X e. B ) |
||
| Assertion | grprinvd | |- ( ph -> ( X .+ ( N ` X ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplinvd.b | |- B = ( Base ` G ) |
|
| 2 | grplinvd.p | |- .+ = ( +g ` G ) |
|
| 3 | grplinvd.u | |- .0. = ( 0g ` G ) |
|
| 4 | grplinvd.n | |- N = ( invg ` G ) |
|
| 5 | grplinvd.g | |- ( ph -> G e. Grp ) |
|
| 6 | grplinvd.1 | |- ( ph -> X e. B ) |
|
| 7 | 1 2 3 4 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |
| 8 | 5 6 7 | syl2anc | |- ( ph -> ( X .+ ( N ` X ) ) = .0. ) |