Step |
Hyp |
Ref |
Expression |
1 |
|
grprinvlem.c |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
2 |
|
grprinvlem.o |
|- ( ph -> O e. B ) |
3 |
|
grprinvlem.i |
|- ( ( ph /\ x e. B ) -> ( O .+ x ) = x ) |
4 |
|
grprinvlem.a |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
5 |
|
grprinvlem.n |
|- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O ) |
6 |
|
grprinvd.x |
|- ( ( ph /\ ps ) -> X e. B ) |
7 |
|
grprinvd.n |
|- ( ( ph /\ ps ) -> N e. B ) |
8 |
|
grprinvd.e |
|- ( ( ph /\ ps ) -> ( N .+ X ) = O ) |
9 |
1
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
10 |
9
|
caovclg |
|- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u .+ v ) e. B ) |
11 |
10
|
adantlr |
|- ( ( ( ph /\ ps ) /\ ( u e. B /\ v e. B ) ) -> ( u .+ v ) e. B ) |
12 |
11 6 7
|
caovcld |
|- ( ( ph /\ ps ) -> ( X .+ N ) e. B ) |
13 |
4
|
caovassg |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
14 |
13
|
adantlr |
|- ( ( ( ph /\ ps ) /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
15 |
14 6 7 12
|
caovassd |
|- ( ( ph /\ ps ) -> ( ( X .+ N ) .+ ( X .+ N ) ) = ( X .+ ( N .+ ( X .+ N ) ) ) ) |
16 |
8
|
oveq1d |
|- ( ( ph /\ ps ) -> ( ( N .+ X ) .+ N ) = ( O .+ N ) ) |
17 |
14 7 6 7
|
caovassd |
|- ( ( ph /\ ps ) -> ( ( N .+ X ) .+ N ) = ( N .+ ( X .+ N ) ) ) |
18 |
|
oveq2 |
|- ( y = N -> ( O .+ y ) = ( O .+ N ) ) |
19 |
|
id |
|- ( y = N -> y = N ) |
20 |
18 19
|
eqeq12d |
|- ( y = N -> ( ( O .+ y ) = y <-> ( O .+ N ) = N ) ) |
21 |
3
|
ralrimiva |
|- ( ph -> A. x e. B ( O .+ x ) = x ) |
22 |
|
oveq2 |
|- ( x = y -> ( O .+ x ) = ( O .+ y ) ) |
23 |
|
id |
|- ( x = y -> x = y ) |
24 |
22 23
|
eqeq12d |
|- ( x = y -> ( ( O .+ x ) = x <-> ( O .+ y ) = y ) ) |
25 |
24
|
cbvralvw |
|- ( A. x e. B ( O .+ x ) = x <-> A. y e. B ( O .+ y ) = y ) |
26 |
21 25
|
sylib |
|- ( ph -> A. y e. B ( O .+ y ) = y ) |
27 |
26
|
adantr |
|- ( ( ph /\ ps ) -> A. y e. B ( O .+ y ) = y ) |
28 |
20 27 7
|
rspcdva |
|- ( ( ph /\ ps ) -> ( O .+ N ) = N ) |
29 |
16 17 28
|
3eqtr3d |
|- ( ( ph /\ ps ) -> ( N .+ ( X .+ N ) ) = N ) |
30 |
29
|
oveq2d |
|- ( ( ph /\ ps ) -> ( X .+ ( N .+ ( X .+ N ) ) ) = ( X .+ N ) ) |
31 |
15 30
|
eqtrd |
|- ( ( ph /\ ps ) -> ( ( X .+ N ) .+ ( X .+ N ) ) = ( X .+ N ) ) |
32 |
1 2 3 4 5 12 31
|
grprinvlem |
|- ( ( ph /\ ps ) -> ( X .+ N ) = O ) |