Step |
Hyp |
Ref |
Expression |
1 |
|
grplrinv.b |
|- B = ( Base ` G ) |
2 |
|
grplrinv.p |
|- .+ = ( +g ` G ) |
3 |
|
grplrinv.i |
|- .0. = ( 0g ` G ) |
4 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
5 |
1 4
|
grpinvcl |
|- ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) |
6 |
|
oveq1 |
|- ( y = ( ( invg ` G ) ` x ) -> ( y .+ x ) = ( ( ( invg ` G ) ` x ) .+ x ) ) |
7 |
6
|
eqeq1d |
|- ( y = ( ( invg ` G ) ` x ) -> ( ( y .+ x ) = .0. <-> ( ( ( invg ` G ) ` x ) .+ x ) = .0. ) ) |
8 |
|
oveq2 |
|- ( y = ( ( invg ` G ) ` x ) -> ( x .+ y ) = ( x .+ ( ( invg ` G ) ` x ) ) ) |
9 |
8
|
eqeq1d |
|- ( y = ( ( invg ` G ) ` x ) -> ( ( x .+ y ) = .0. <-> ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) |
10 |
7 9
|
anbi12d |
|- ( y = ( ( invg ` G ) ` x ) -> ( ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) <-> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) ) |
11 |
10
|
adantl |
|- ( ( ( G e. Grp /\ x e. B ) /\ y = ( ( invg ` G ) ` x ) ) -> ( ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) <-> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) ) |
12 |
1 2 3 4
|
grplinv |
|- ( ( G e. Grp /\ x e. B ) -> ( ( ( invg ` G ) ` x ) .+ x ) = .0. ) |
13 |
1 2 3 4
|
grprinv |
|- ( ( G e. Grp /\ x e. B ) -> ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) |
14 |
12 13
|
jca |
|- ( ( G e. Grp /\ x e. B ) -> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) |
15 |
5 11 14
|
rspcedvd |
|- ( ( G e. Grp /\ x e. B ) -> E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) |
16 |
15
|
ralrimiva |
|- ( G e. Grp -> A. x e. B E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) |