Step |
Hyp |
Ref |
Expression |
1 |
|
grplrinv.b |
|- B = ( Base ` G ) |
2 |
|
grplrinv.p |
|- .+ = ( +g ` G ) |
3 |
|
grplrinv.i |
|- .0. = ( 0g ` G ) |
4 |
1 2 3
|
grplid |
|- ( ( G e. Grp /\ A e. B ) -> ( .0. .+ A ) = A ) |
5 |
1 2 3
|
grprid |
|- ( ( G e. Grp /\ A e. B ) -> ( A .+ .0. ) = A ) |
6 |
1 2 3
|
grplrinv |
|- ( G e. Grp -> A. z e. B E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) ) |
7 |
|
oveq2 |
|- ( z = A -> ( y .+ z ) = ( y .+ A ) ) |
8 |
7
|
eqeq1d |
|- ( z = A -> ( ( y .+ z ) = .0. <-> ( y .+ A ) = .0. ) ) |
9 |
|
oveq1 |
|- ( z = A -> ( z .+ y ) = ( A .+ y ) ) |
10 |
9
|
eqeq1d |
|- ( z = A -> ( ( z .+ y ) = .0. <-> ( A .+ y ) = .0. ) ) |
11 |
8 10
|
anbi12d |
|- ( z = A -> ( ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) <-> ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
12 |
11
|
rexbidv |
|- ( z = A -> ( E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) <-> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
13 |
12
|
rspcv |
|- ( A e. B -> ( A. z e. B E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) -> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
14 |
6 13
|
mpan9 |
|- ( ( G e. Grp /\ A e. B ) -> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) |
15 |
4 5 14
|
jca31 |
|- ( ( G e. Grp /\ A e. B ) -> ( ( ( .0. .+ A ) = A /\ ( A .+ .0. ) = A ) /\ E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |