| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpidinv.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grpidinv.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 4 | 1 3 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. B ) | 
						
							| 5 |  | oveq1 |  |-  ( u = ( 0g ` G ) -> ( u .+ x ) = ( ( 0g ` G ) .+ x ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( u = ( 0g ` G ) -> ( ( u .+ x ) = x <-> ( ( 0g ` G ) .+ x ) = x ) ) | 
						
							| 7 |  | oveq2 |  |-  ( u = ( 0g ` G ) -> ( x .+ u ) = ( x .+ ( 0g ` G ) ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( u = ( 0g ` G ) -> ( ( x .+ u ) = x <-> ( x .+ ( 0g ` G ) ) = x ) ) | 
						
							| 9 | 6 8 | anbi12d |  |-  ( u = ( 0g ` G ) -> ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) ) ) | 
						
							| 10 |  | eqeq2 |  |-  ( u = ( 0g ` G ) -> ( ( y .+ x ) = u <-> ( y .+ x ) = ( 0g ` G ) ) ) | 
						
							| 11 |  | eqeq2 |  |-  ( u = ( 0g ` G ) -> ( ( x .+ y ) = u <-> ( x .+ y ) = ( 0g ` G ) ) ) | 
						
							| 12 | 10 11 | anbi12d |  |-  ( u = ( 0g ` G ) -> ( ( ( y .+ x ) = u /\ ( x .+ y ) = u ) <-> ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( u = ( 0g ` G ) -> ( E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) <-> E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) | 
						
							| 14 | 9 13 | anbi12d |  |-  ( u = ( 0g ` G ) -> ( ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) <-> ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) ) | 
						
							| 15 | 14 | ralbidv |  |-  ( u = ( 0g ` G ) -> ( A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) <-> A. x e. B ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( G e. Grp /\ u = ( 0g ` G ) ) -> ( A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) <-> A. x e. B ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) ) | 
						
							| 17 | 1 2 3 | grpidinv2 |  |-  ( ( G e. Grp /\ x e. B ) -> ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( G e. Grp -> A. x e. B ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) | 
						
							| 19 | 4 16 18 | rspcedvd |  |-  ( G e. Grp -> E. u e. B A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) ) |