| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpidinv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpidinv.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 4 | 1 3 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( 𝑢  +  𝑥 )  =  ( ( 0g ‘ 𝐺 )  +  𝑥 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( 𝑢  +  𝑥 )  =  𝑥  ↔  ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( 𝑥  +  𝑢 )  =  ( 𝑥  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( 𝑥  +  𝑢 )  =  𝑥  ↔  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 ) ) | 
						
							| 9 | 6 8 | anbi12d | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( ( 𝑢  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑢 )  =  𝑥 )  ↔  ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 ) ) ) | 
						
							| 10 |  | eqeq2 | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( 𝑦  +  𝑥 )  =  𝑢  ↔  ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 11 |  | eqeq2 | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( 𝑥  +  𝑦 )  =  𝑢  ↔  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 12 | 10 11 | anbi12d | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( ( 𝑦  +  𝑥 )  =  𝑢  ∧  ( 𝑥  +  𝑦 )  =  𝑢 )  ↔  ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑢  ∧  ( 𝑥  +  𝑦 )  =  𝑢 )  ↔  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 14 | 9 13 | anbi12d | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ( ( ( 𝑢  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑢  ∧  ( 𝑥  +  𝑦 )  =  𝑢 ) )  ↔  ( ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) ) | 
						
							| 15 | 14 | ralbidv | ⊢ ( 𝑢  =  ( 0g ‘ 𝐺 )  →  ( ∀ 𝑥  ∈  𝐵 ( ( ( 𝑢  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑢  ∧  ( 𝑥  +  𝑦 )  =  𝑢 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  =  ( 0g ‘ 𝐺 ) )  →  ( ∀ 𝑥  ∈  𝐵 ( ( ( 𝑢  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑢  ∧  ( 𝑥  +  𝑦 )  =  𝑢 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) ) | 
						
							| 17 | 1 2 3 | grpidinv2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝐵 ( ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  ( 0g ‘ 𝐺 ) )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  ( 0g ‘ 𝐺 )  ∧  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 19 | 4 16 18 | rspcedvd | ⊢ ( 𝐺  ∈  Grp  →  ∃ 𝑢  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( ( 𝑢  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑢  ∧  ( 𝑥  +  𝑦 )  =  𝑢 ) ) ) |