Step |
Hyp |
Ref |
Expression |
1 |
|
grplrinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grplrinv.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grplrinv.i |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
1 2 3
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 0 + 𝐴 ) = 𝐴 ) |
5 |
1 2 3
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 + 0 ) = 𝐴 ) |
6 |
1 2 3
|
grplrinv |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑦 + 𝑧 ) = ( 𝑦 + 𝐴 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 + 𝑧 ) = 0 ↔ ( 𝑦 + 𝐴 ) = 0 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 + 𝑦 ) = ( 𝐴 + 𝑦 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 + 𝑦 ) = 0 ↔ ( 𝐴 + 𝑦 ) = 0 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) ↔ ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
13 |
12
|
rspcv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
14 |
6 13
|
mpan9 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) |
15 |
4 5 14
|
jca31 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( ( ( 0 + 𝐴 ) = 𝐴 ∧ ( 𝐴 + 0 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |