| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow3.g |  |-  ( ph -> G e. Grp ) | 
						
							| 3 |  | sylow3.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 4 |  | sylow3.p |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | sylow3lem5.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow3lem5.d |  |-  .- = ( -g ` G ) | 
						
							| 7 |  | sylow3lem5.k |  |-  ( ph -> K e. ( P pSyl G ) ) | 
						
							| 8 |  | sylow3lem5.m |  |-  .(+) = ( x e. K , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) ) | 
						
							| 9 |  | sylow3lem6.n |  |-  N = { x e. X | A. y e. X ( ( x .+ y ) e. s <-> ( y .+ x ) e. s ) } | 
						
							| 10 |  | eqid |  |-  ( Base ` ( G |`s K ) ) = ( Base ` ( G |`s K ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | sylow3lem5 |  |-  ( ph -> .(+) e. ( ( G |`s K ) GrpAct ( P pSyl G ) ) ) | 
						
							| 12 |  | eqid |  |-  ( G |`s K ) = ( G |`s K ) | 
						
							| 13 | 12 | slwpgp |  |-  ( K e. ( P pSyl G ) -> P pGrp ( G |`s K ) ) | 
						
							| 14 | 7 13 | syl |  |-  ( ph -> P pGrp ( G |`s K ) ) | 
						
							| 15 |  | slwsubg |  |-  ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) | 
						
							| 16 | 7 15 | syl |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 17 | 12 | subgbas |  |-  ( K e. ( SubGrp ` G ) -> K = ( Base ` ( G |`s K ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> K = ( Base ` ( G |`s K ) ) ) | 
						
							| 19 | 1 | subgss |  |-  ( K e. ( SubGrp ` G ) -> K C_ X ) | 
						
							| 20 | 16 19 | syl |  |-  ( ph -> K C_ X ) | 
						
							| 21 | 3 20 | ssfid |  |-  ( ph -> K e. Fin ) | 
						
							| 22 | 18 21 | eqeltrrd |  |-  ( ph -> ( Base ` ( G |`s K ) ) e. Fin ) | 
						
							| 23 |  | pwfi |  |-  ( X e. Fin <-> ~P X e. Fin ) | 
						
							| 24 | 3 23 | sylib |  |-  ( ph -> ~P X e. Fin ) | 
						
							| 25 |  | slwsubg |  |-  ( x e. ( P pSyl G ) -> x e. ( SubGrp ` G ) ) | 
						
							| 26 | 1 | subgss |  |-  ( x e. ( SubGrp ` G ) -> x C_ X ) | 
						
							| 27 | 25 26 | syl |  |-  ( x e. ( P pSyl G ) -> x C_ X ) | 
						
							| 28 | 25 27 | elpwd |  |-  ( x e. ( P pSyl G ) -> x e. ~P X ) | 
						
							| 29 | 28 | ssriv |  |-  ( P pSyl G ) C_ ~P X | 
						
							| 30 |  | ssfi |  |-  ( ( ~P X e. Fin /\ ( P pSyl G ) C_ ~P X ) -> ( P pSyl G ) e. Fin ) | 
						
							| 31 | 24 29 30 | sylancl |  |-  ( ph -> ( P pSyl G ) e. Fin ) | 
						
							| 32 |  | eqid |  |-  { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } = { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } | 
						
							| 33 |  | eqid |  |-  { <. z , w >. | ( { z , w } C_ ( P pSyl G ) /\ E. h e. ( Base ` ( G |`s K ) ) ( h .(+) z ) = w ) } = { <. z , w >. | ( { z , w } C_ ( P pSyl G ) /\ E. h e. ( Base ` ( G |`s K ) ) ( h .(+) z ) = w ) } | 
						
							| 34 | 10 11 14 22 31 32 33 | sylow2a |  |-  ( ph -> P || ( ( # ` ( P pSyl G ) ) - ( # ` { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } ) ) ) | 
						
							| 35 |  | eqcom |  |-  ( ran ( z e. s |-> ( ( g .+ z ) .- g ) ) = s <-> s = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) | 
						
							| 36 | 20 | adantr |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> K C_ X ) | 
						
							| 37 | 36 | sselda |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> g e. X ) | 
						
							| 38 | 37 | biantrurd |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> ( s = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) <-> ( g e. X /\ s = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) ) ) | 
						
							| 39 | 35 38 | bitrid |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> ( ran ( z e. s |-> ( ( g .+ z ) .- g ) ) = s <-> ( g e. X /\ s = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) ) ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> g e. K ) | 
						
							| 41 |  | simplr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> s e. ( P pSyl G ) ) | 
						
							| 42 |  | simpr |  |-  ( ( x = g /\ y = s ) -> y = s ) | 
						
							| 43 |  | simpl |  |-  ( ( x = g /\ y = s ) -> x = g ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( x = g /\ y = s ) -> ( x .+ z ) = ( g .+ z ) ) | 
						
							| 45 | 44 43 | oveq12d |  |-  ( ( x = g /\ y = s ) -> ( ( x .+ z ) .- x ) = ( ( g .+ z ) .- g ) ) | 
						
							| 46 | 42 45 | mpteq12dv |  |-  ( ( x = g /\ y = s ) -> ( z e. y |-> ( ( x .+ z ) .- x ) ) = ( z e. s |-> ( ( g .+ z ) .- g ) ) ) | 
						
							| 47 | 46 | rneqd |  |-  ( ( x = g /\ y = s ) -> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) | 
						
							| 48 |  | vex |  |-  s e. _V | 
						
							| 49 | 48 | mptex |  |-  ( z e. s |-> ( ( g .+ z ) .- g ) ) e. _V | 
						
							| 50 | 49 | rnex |  |-  ran ( z e. s |-> ( ( g .+ z ) .- g ) ) e. _V | 
						
							| 51 | 47 8 50 | ovmpoa |  |-  ( ( g e. K /\ s e. ( P pSyl G ) ) -> ( g .(+) s ) = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) | 
						
							| 52 | 40 41 51 | syl2anc |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> ( g .(+) s ) = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) | 
						
							| 53 | 52 | eqeq1d |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> ( ( g .(+) s ) = s <-> ran ( z e. s |-> ( ( g .+ z ) .- g ) ) = s ) ) | 
						
							| 54 |  | slwsubg |  |-  ( s e. ( P pSyl G ) -> s e. ( SubGrp ` G ) ) | 
						
							| 55 | 54 | ad2antlr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> s e. ( SubGrp ` G ) ) | 
						
							| 56 |  | eqid |  |-  ( z e. s |-> ( ( g .+ z ) .- g ) ) = ( z e. s |-> ( ( g .+ z ) .- g ) ) | 
						
							| 57 | 1 5 6 56 9 | conjnmzb |  |-  ( s e. ( SubGrp ` G ) -> ( g e. N <-> ( g e. X /\ s = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) ) ) | 
						
							| 58 | 55 57 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> ( g e. N <-> ( g e. X /\ s = ran ( z e. s |-> ( ( g .+ z ) .- g ) ) ) ) ) | 
						
							| 59 | 39 53 58 | 3bitr4d |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ g e. K ) -> ( ( g .(+) s ) = s <-> g e. N ) ) | 
						
							| 60 | 59 | ralbidva |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> ( A. g e. K ( g .(+) s ) = s <-> A. g e. K g e. N ) ) | 
						
							| 61 |  | dfss3 |  |-  ( K C_ N <-> A. g e. K g e. N ) | 
						
							| 62 | 60 61 | bitr4di |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> ( A. g e. K ( g .(+) s ) = s <-> K C_ N ) ) | 
						
							| 63 | 18 | adantr |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> K = ( Base ` ( G |`s K ) ) ) | 
						
							| 64 | 63 | raleqdv |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> ( A. g e. K ( g .(+) s ) = s <-> A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s ) ) | 
						
							| 65 |  | eqid |  |-  ( Base ` ( G |`s N ) ) = ( Base ` ( G |`s N ) ) | 
						
							| 66 | 2 | ad2antrr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> G e. Grp ) | 
						
							| 67 | 9 1 5 | nmzsubg |  |-  ( G e. Grp -> N e. ( SubGrp ` G ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> N e. ( SubGrp ` G ) ) | 
						
							| 69 |  | eqid |  |-  ( G |`s N ) = ( G |`s N ) | 
						
							| 70 | 69 | subgbas |  |-  ( N e. ( SubGrp ` G ) -> N = ( Base ` ( G |`s N ) ) ) | 
						
							| 71 | 68 70 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> N = ( Base ` ( G |`s N ) ) ) | 
						
							| 72 | 3 | ad2antrr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> X e. Fin ) | 
						
							| 73 | 1 | subgss |  |-  ( N e. ( SubGrp ` G ) -> N C_ X ) | 
						
							| 74 | 68 73 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> N C_ X ) | 
						
							| 75 | 72 74 | ssfid |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> N e. Fin ) | 
						
							| 76 | 71 75 | eqeltrrd |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> ( Base ` ( G |`s N ) ) e. Fin ) | 
						
							| 77 | 7 | ad2antrr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> K e. ( P pSyl G ) ) | 
						
							| 78 |  | simpr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> K C_ N ) | 
						
							| 79 | 69 | subgslw |  |-  ( ( N e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ N ) -> K e. ( P pSyl ( G |`s N ) ) ) | 
						
							| 80 | 68 77 78 79 | syl3anc |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> K e. ( P pSyl ( G |`s N ) ) ) | 
						
							| 81 |  | simplr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> s e. ( P pSyl G ) ) | 
						
							| 82 | 54 | ad2antlr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> s e. ( SubGrp ` G ) ) | 
						
							| 83 | 9 1 5 | ssnmz |  |-  ( s e. ( SubGrp ` G ) -> s C_ N ) | 
						
							| 84 | 82 83 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> s C_ N ) | 
						
							| 85 | 69 | subgslw |  |-  ( ( N e. ( SubGrp ` G ) /\ s e. ( P pSyl G ) /\ s C_ N ) -> s e. ( P pSyl ( G |`s N ) ) ) | 
						
							| 86 | 68 81 84 85 | syl3anc |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> s e. ( P pSyl ( G |`s N ) ) ) | 
						
							| 87 | 1 | fvexi |  |-  X e. _V | 
						
							| 88 | 9 87 | rabex2 |  |-  N e. _V | 
						
							| 89 | 69 5 | ressplusg |  |-  ( N e. _V -> .+ = ( +g ` ( G |`s N ) ) ) | 
						
							| 90 | 88 89 | ax-mp |  |-  .+ = ( +g ` ( G |`s N ) ) | 
						
							| 91 |  | eqid |  |-  ( -g ` ( G |`s N ) ) = ( -g ` ( G |`s N ) ) | 
						
							| 92 | 65 76 80 86 90 91 | sylow2 |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> E. g e. ( Base ` ( G |`s N ) ) K = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) ) | 
						
							| 93 | 9 1 5 69 | nmznsg |  |-  ( s e. ( SubGrp ` G ) -> s e. ( NrmSGrp ` ( G |`s N ) ) ) | 
						
							| 94 | 82 93 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> s e. ( NrmSGrp ` ( G |`s N ) ) ) | 
						
							| 95 |  | eqid |  |-  ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) = ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) | 
						
							| 96 | 65 90 91 95 | conjnsg |  |-  ( ( s e. ( NrmSGrp ` ( G |`s N ) ) /\ g e. ( Base ` ( G |`s N ) ) ) -> s = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) ) | 
						
							| 97 | 94 96 | sylan |  |-  ( ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) /\ g e. ( Base ` ( G |`s N ) ) ) -> s = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) ) | 
						
							| 98 |  | eqeq2 |  |-  ( K = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) -> ( s = K <-> s = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) ) ) | 
						
							| 99 | 97 98 | syl5ibrcom |  |-  ( ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) /\ g e. ( Base ` ( G |`s N ) ) ) -> ( K = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) -> s = K ) ) | 
						
							| 100 | 99 | rexlimdva |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> ( E. g e. ( Base ` ( G |`s N ) ) K = ran ( z e. s |-> ( ( g .+ z ) ( -g ` ( G |`s N ) ) g ) ) -> s = K ) ) | 
						
							| 101 | 92 100 | mpd |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ K C_ N ) -> s = K ) | 
						
							| 102 |  | simpr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ s = K ) -> s = K ) | 
						
							| 103 | 16 | ad2antrr |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ s = K ) -> K e. ( SubGrp ` G ) ) | 
						
							| 104 | 102 103 | eqeltrd |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ s = K ) -> s e. ( SubGrp ` G ) ) | 
						
							| 105 | 104 83 | syl |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ s = K ) -> s C_ N ) | 
						
							| 106 | 102 105 | eqsstrrd |  |-  ( ( ( ph /\ s e. ( P pSyl G ) ) /\ s = K ) -> K C_ N ) | 
						
							| 107 | 101 106 | impbida |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> ( K C_ N <-> s = K ) ) | 
						
							| 108 | 62 64 107 | 3bitr3d |  |-  ( ( ph /\ s e. ( P pSyl G ) ) -> ( A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s <-> s = K ) ) | 
						
							| 109 | 108 | rabbidva |  |-  ( ph -> { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } = { s e. ( P pSyl G ) | s = K } ) | 
						
							| 110 |  | rabsn |  |-  ( K e. ( P pSyl G ) -> { s e. ( P pSyl G ) | s = K } = { K } ) | 
						
							| 111 | 7 110 | syl |  |-  ( ph -> { s e. ( P pSyl G ) | s = K } = { K } ) | 
						
							| 112 | 109 111 | eqtrd |  |-  ( ph -> { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } = { K } ) | 
						
							| 113 | 112 | fveq2d |  |-  ( ph -> ( # ` { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } ) = ( # ` { K } ) ) | 
						
							| 114 |  | hashsng |  |-  ( K e. ( P pSyl G ) -> ( # ` { K } ) = 1 ) | 
						
							| 115 | 7 114 | syl |  |-  ( ph -> ( # ` { K } ) = 1 ) | 
						
							| 116 | 113 115 | eqtrd |  |-  ( ph -> ( # ` { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } ) = 1 ) | 
						
							| 117 | 116 | oveq2d |  |-  ( ph -> ( ( # ` ( P pSyl G ) ) - ( # ` { s e. ( P pSyl G ) | A. g e. ( Base ` ( G |`s K ) ) ( g .(+) s ) = s } ) ) = ( ( # ` ( P pSyl G ) ) - 1 ) ) | 
						
							| 118 | 34 117 | breqtrd |  |-  ( ph -> P || ( ( # ` ( P pSyl G ) ) - 1 ) ) | 
						
							| 119 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 120 | 4 119 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 121 |  | hashcl |  |-  ( ( P pSyl G ) e. Fin -> ( # ` ( P pSyl G ) ) e. NN0 ) | 
						
							| 122 | 31 121 | syl |  |-  ( ph -> ( # ` ( P pSyl G ) ) e. NN0 ) | 
						
							| 123 | 122 | nn0zd |  |-  ( ph -> ( # ` ( P pSyl G ) ) e. ZZ ) | 
						
							| 124 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 125 |  | moddvds |  |-  ( ( P e. NN /\ ( # ` ( P pSyl G ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( # ` ( P pSyl G ) ) mod P ) = ( 1 mod P ) <-> P || ( ( # ` ( P pSyl G ) ) - 1 ) ) ) | 
						
							| 126 | 120 123 124 125 | syl3anc |  |-  ( ph -> ( ( ( # ` ( P pSyl G ) ) mod P ) = ( 1 mod P ) <-> P || ( ( # ` ( P pSyl G ) ) - 1 ) ) ) | 
						
							| 127 | 118 126 | mpbird |  |-  ( ph -> ( ( # ` ( P pSyl G ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 128 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 129 |  | eluz2b2 |  |-  ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ 1 < P ) ) | 
						
							| 130 |  | nnre |  |-  ( P e. NN -> P e. RR ) | 
						
							| 131 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 132 | 130 131 | sylan |  |-  ( ( P e. NN /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 133 | 129 132 | sylbi |  |-  ( P e. ( ZZ>= ` 2 ) -> ( 1 mod P ) = 1 ) | 
						
							| 134 | 4 128 133 | 3syl |  |-  ( ph -> ( 1 mod P ) = 1 ) | 
						
							| 135 | 127 134 | eqtrd |  |-  ( ph -> ( ( # ` ( P pSyl G ) ) mod P ) = 1 ) |