| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow3.g |  |-  ( ph -> G e. Grp ) | 
						
							| 3 |  | sylow3.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 4 |  | sylow3.p |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | sylow3.n |  |-  N = ( # ` ( P pSyl G ) ) | 
						
							| 6 | 1 | slwn0 |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> ( P pSyl G ) =/= (/) ) | 
						
							| 7 | 2 3 4 6 | syl3anc |  |-  ( ph -> ( P pSyl G ) =/= (/) ) | 
						
							| 8 |  | n0 |  |-  ( ( P pSyl G ) =/= (/) <-> E. k k e. ( P pSyl G ) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ph -> E. k k e. ( P pSyl G ) ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> G e. Grp ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> X e. Fin ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> P e. Prime ) | 
						
							| 13 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 14 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 15 |  | oveq2 |  |-  ( c = z -> ( a ( +g ` G ) c ) = ( a ( +g ` G ) z ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( c = z -> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) = ( ( a ( +g ` G ) z ) ( -g ` G ) a ) ) | 
						
							| 17 | 16 | cbvmptv |  |-  ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) = ( z e. b |-> ( ( a ( +g ` G ) z ) ( -g ` G ) a ) ) | 
						
							| 18 |  | oveq1 |  |-  ( a = x -> ( a ( +g ` G ) z ) = ( x ( +g ` G ) z ) ) | 
						
							| 19 |  | id |  |-  ( a = x -> a = x ) | 
						
							| 20 | 18 19 | oveq12d |  |-  ( a = x -> ( ( a ( +g ` G ) z ) ( -g ` G ) a ) = ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) | 
						
							| 21 | 20 | mpteq2dv |  |-  ( a = x -> ( z e. b |-> ( ( a ( +g ` G ) z ) ( -g ` G ) a ) ) = ( z e. b |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 22 | 17 21 | eqtrid |  |-  ( a = x -> ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) = ( z e. b |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 23 | 22 | rneqd |  |-  ( a = x -> ran ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) = ran ( z e. b |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 24 |  | mpteq1 |  |-  ( b = y -> ( z e. b |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) = ( z e. y |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 25 | 24 | rneqd |  |-  ( b = y -> ran ( z e. b |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) = ran ( z e. y |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 26 | 23 25 | cbvmpov |  |-  ( a e. X , b e. ( P pSyl G ) |-> ran ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) ) = ( x e. X , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> k e. ( P pSyl G ) ) | 
						
							| 28 |  | eqid |  |-  { u e. X | ( u ( a e. X , b e. ( P pSyl G ) |-> ran ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) ) k ) = k } = { u e. X | ( u ( a e. X , b e. ( P pSyl G ) |-> ran ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) ) k ) = k } | 
						
							| 29 |  | eqid |  |-  { x e. X | A. y e. X ( ( x ( +g ` G ) y ) e. k <-> ( y ( +g ` G ) x ) e. k ) } = { x e. X | A. y e. X ( ( x ( +g ` G ) y ) e. k <-> ( y ( +g ` G ) x ) e. k ) } | 
						
							| 30 | 1 10 11 12 13 14 26 27 28 29 | sylow3lem4 |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> ( # ` ( P pSyl G ) ) || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 31 | 5 30 | eqbrtrid |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> N || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 32 | 5 | oveq1i |  |-  ( N mod P ) = ( ( # ` ( P pSyl G ) ) mod P ) | 
						
							| 33 | 23 25 | cbvmpov |  |-  ( a e. k , b e. ( P pSyl G ) |-> ran ( c e. b |-> ( ( a ( +g ` G ) c ) ( -g ` G ) a ) ) ) = ( x e. k , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x ( +g ` G ) z ) ( -g ` G ) x ) ) ) | 
						
							| 34 |  | eqid |  |-  { x e. X | A. y e. X ( ( x ( +g ` G ) y ) e. s <-> ( y ( +g ` G ) x ) e. s ) } = { x e. X | A. y e. X ( ( x ( +g ` G ) y ) e. s <-> ( y ( +g ` G ) x ) e. s ) } | 
						
							| 35 | 1 10 11 12 13 14 27 33 34 | sylow3lem6 |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> ( ( # ` ( P pSyl G ) ) mod P ) = 1 ) | 
						
							| 36 | 32 35 | eqtrid |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> ( N mod P ) = 1 ) | 
						
							| 37 | 31 36 | jca |  |-  ( ( ph /\ k e. ( P pSyl G ) ) -> ( N || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) /\ ( N mod P ) = 1 ) ) | 
						
							| 38 | 9 37 | exlimddv |  |-  ( ph -> ( N || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) /\ ( N mod P ) = 1 ) ) |