| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow3.g |  |-  ( ph -> G e. Grp ) | 
						
							| 3 |  | sylow3.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 4 |  | sylow3.p |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | sylow3lem1.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow3lem1.d |  |-  .- = ( -g ` G ) | 
						
							| 7 |  | sylow3lem1.m |  |-  .(+) = ( x e. X , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) ) | 
						
							| 8 |  | sylow3lem2.k |  |-  ( ph -> K e. ( P pSyl G ) ) | 
						
							| 9 |  | sylow3lem2.h |  |-  H = { u e. X | ( u .(+) K ) = K } | 
						
							| 10 |  | sylow3lem2.n |  |-  N = { x e. X | A. y e. X ( ( x .+ y ) e. K <-> ( y .+ x ) e. K ) } | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | sylow3lem3 |  |-  ( ph -> ( # ` ( P pSyl G ) ) = ( # ` ( X /. ( G ~QG N ) ) ) ) | 
						
							| 12 |  | slwsubg |  |-  ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) | 
						
							| 13 | 8 12 | syl |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 14 |  | eqid |  |-  ( G |`s N ) = ( G |`s N ) | 
						
							| 15 | 10 1 5 14 | nmznsg |  |-  ( K e. ( SubGrp ` G ) -> K e. ( NrmSGrp ` ( G |`s N ) ) ) | 
						
							| 16 |  | nsgsubg |  |-  ( K e. ( NrmSGrp ` ( G |`s N ) ) -> K e. ( SubGrp ` ( G |`s N ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( K e. ( SubGrp ` G ) -> K e. ( SubGrp ` ( G |`s N ) ) ) | 
						
							| 18 | 13 17 | syl |  |-  ( ph -> K e. ( SubGrp ` ( G |`s N ) ) ) | 
						
							| 19 | 10 1 5 | nmzsubg |  |-  ( G e. Grp -> N e. ( SubGrp ` G ) ) | 
						
							| 20 | 2 19 | syl |  |-  ( ph -> N e. ( SubGrp ` G ) ) | 
						
							| 21 | 14 | subgbas |  |-  ( N e. ( SubGrp ` G ) -> N = ( Base ` ( G |`s N ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> N = ( Base ` ( G |`s N ) ) ) | 
						
							| 23 | 1 | subgss |  |-  ( N e. ( SubGrp ` G ) -> N C_ X ) | 
						
							| 24 | 20 23 | syl |  |-  ( ph -> N C_ X ) | 
						
							| 25 | 3 24 | ssfid |  |-  ( ph -> N e. Fin ) | 
						
							| 26 | 22 25 | eqeltrrd |  |-  ( ph -> ( Base ` ( G |`s N ) ) e. Fin ) | 
						
							| 27 |  | eqid |  |-  ( Base ` ( G |`s N ) ) = ( Base ` ( G |`s N ) ) | 
						
							| 28 | 27 | lagsubg |  |-  ( ( K e. ( SubGrp ` ( G |`s N ) ) /\ ( Base ` ( G |`s N ) ) e. Fin ) -> ( # ` K ) || ( # ` ( Base ` ( G |`s N ) ) ) ) | 
						
							| 29 | 18 26 28 | syl2anc |  |-  ( ph -> ( # ` K ) || ( # ` ( Base ` ( G |`s N ) ) ) ) | 
						
							| 30 | 22 | fveq2d |  |-  ( ph -> ( # ` N ) = ( # ` ( Base ` ( G |`s N ) ) ) ) | 
						
							| 31 | 29 30 | breqtrrd |  |-  ( ph -> ( # ` K ) || ( # ` N ) ) | 
						
							| 32 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 33 | 32 | subg0cl |  |-  ( K e. ( SubGrp ` G ) -> ( 0g ` G ) e. K ) | 
						
							| 34 | 13 33 | syl |  |-  ( ph -> ( 0g ` G ) e. K ) | 
						
							| 35 | 34 | ne0d |  |-  ( ph -> K =/= (/) ) | 
						
							| 36 | 1 | subgss |  |-  ( K e. ( SubGrp ` G ) -> K C_ X ) | 
						
							| 37 | 13 36 | syl |  |-  ( ph -> K C_ X ) | 
						
							| 38 | 3 37 | ssfid |  |-  ( ph -> K e. Fin ) | 
						
							| 39 |  | hashnncl |  |-  ( K e. Fin -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ph -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) | 
						
							| 41 | 35 40 | mpbird |  |-  ( ph -> ( # ` K ) e. NN ) | 
						
							| 42 | 41 | nnzd |  |-  ( ph -> ( # ` K ) e. ZZ ) | 
						
							| 43 |  | hashcl |  |-  ( N e. Fin -> ( # ` N ) e. NN0 ) | 
						
							| 44 | 25 43 | syl |  |-  ( ph -> ( # ` N ) e. NN0 ) | 
						
							| 45 | 44 | nn0zd |  |-  ( ph -> ( # ` N ) e. ZZ ) | 
						
							| 46 |  | pwfi |  |-  ( X e. Fin <-> ~P X e. Fin ) | 
						
							| 47 | 3 46 | sylib |  |-  ( ph -> ~P X e. Fin ) | 
						
							| 48 |  | eqid |  |-  ( G ~QG N ) = ( G ~QG N ) | 
						
							| 49 | 1 48 | eqger |  |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er X ) | 
						
							| 50 | 20 49 | syl |  |-  ( ph -> ( G ~QG N ) Er X ) | 
						
							| 51 | 50 | qsss |  |-  ( ph -> ( X /. ( G ~QG N ) ) C_ ~P X ) | 
						
							| 52 | 47 51 | ssfid |  |-  ( ph -> ( X /. ( G ~QG N ) ) e. Fin ) | 
						
							| 53 |  | hashcl |  |-  ( ( X /. ( G ~QG N ) ) e. Fin -> ( # ` ( X /. ( G ~QG N ) ) ) e. NN0 ) | 
						
							| 54 | 52 53 | syl |  |-  ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) e. NN0 ) | 
						
							| 55 | 54 | nn0zd |  |-  ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) e. ZZ ) | 
						
							| 56 |  | dvdscmul |  |-  ( ( ( # ` K ) e. ZZ /\ ( # ` N ) e. ZZ /\ ( # ` ( X /. ( G ~QG N ) ) ) e. ZZ ) -> ( ( # ` K ) || ( # ` N ) -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) ) | 
						
							| 57 | 42 45 55 56 | syl3anc |  |-  ( ph -> ( ( # ` K ) || ( # ` N ) -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) ) | 
						
							| 58 | 31 57 | mpd |  |-  ( ph -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) | 
						
							| 59 |  | hashcl |  |-  ( X e. Fin -> ( # ` X ) e. NN0 ) | 
						
							| 60 | 3 59 | syl |  |-  ( ph -> ( # ` X ) e. NN0 ) | 
						
							| 61 | 60 | nn0cnd |  |-  ( ph -> ( # ` X ) e. CC ) | 
						
							| 62 | 41 | nncnd |  |-  ( ph -> ( # ` K ) e. CC ) | 
						
							| 63 | 41 | nnne0d |  |-  ( ph -> ( # ` K ) =/= 0 ) | 
						
							| 64 | 61 62 63 | divcan1d |  |-  ( ph -> ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) = ( # ` X ) ) | 
						
							| 65 | 1 48 20 3 | lagsubg2 |  |-  ( ph -> ( # ` X ) = ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) | 
						
							| 66 | 64 65 | eqtrd |  |-  ( ph -> ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) = ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) | 
						
							| 67 | 58 66 | breqtrrd |  |-  ( ph -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) ) | 
						
							| 68 | 1 | lagsubg |  |-  ( ( K e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` K ) || ( # ` X ) ) | 
						
							| 69 | 13 3 68 | syl2anc |  |-  ( ph -> ( # ` K ) || ( # ` X ) ) | 
						
							| 70 | 60 | nn0zd |  |-  ( ph -> ( # ` X ) e. ZZ ) | 
						
							| 71 |  | dvdsval2 |  |-  ( ( ( # ` K ) e. ZZ /\ ( # ` K ) =/= 0 /\ ( # ` X ) e. ZZ ) -> ( ( # ` K ) || ( # ` X ) <-> ( ( # ` X ) / ( # ` K ) ) e. ZZ ) ) | 
						
							| 72 | 42 63 70 71 | syl3anc |  |-  ( ph -> ( ( # ` K ) || ( # ` X ) <-> ( ( # ` X ) / ( # ` K ) ) e. ZZ ) ) | 
						
							| 73 | 69 72 | mpbid |  |-  ( ph -> ( ( # ` X ) / ( # ` K ) ) e. ZZ ) | 
						
							| 74 |  | dvdsmulcr |  |-  ( ( ( # ` ( X /. ( G ~QG N ) ) ) e. ZZ /\ ( ( # ` X ) / ( # ` K ) ) e. ZZ /\ ( ( # ` K ) e. ZZ /\ ( # ` K ) =/= 0 ) ) -> ( ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) <-> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( # ` K ) ) ) ) | 
						
							| 75 | 55 73 42 63 74 | syl112anc |  |-  ( ph -> ( ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) <-> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( # ` K ) ) ) ) | 
						
							| 76 | 67 75 | mpbid |  |-  ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( # ` K ) ) ) | 
						
							| 77 | 1 3 8 | slwhash |  |-  ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 78 | 77 | oveq2d |  |-  ( ph -> ( ( # ` X ) / ( # ` K ) ) = ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 79 | 76 78 | breqtrd |  |-  ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 80 | 11 79 | eqbrtrd |  |-  ( ph -> ( # ` ( P pSyl G ) ) || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |