| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow3.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | sylow3.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | sylow3.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | sylow3lem1.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow3lem1.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 |  | sylow3lem1.m | ⊢  ⊕   =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 8 |  | sylow3lem2.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 9 |  | sylow3lem2.h | ⊢ 𝐻  =  { 𝑢  ∈  𝑋  ∣  ( 𝑢  ⊕  𝐾 )  =  𝐾 } | 
						
							| 10 |  | sylow3lem2.n | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝐾  ↔  ( 𝑦  +  𝑥 )  ∈  𝐾 ) } | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | sylow3lem3 | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  =  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) ) ) | 
						
							| 12 |  | slwsubg | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 13 | 8 12 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝐺  ↾s  𝑁 )  =  ( 𝐺  ↾s  𝑁 ) | 
						
							| 15 | 10 1 5 14 | nmznsg | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ∈  ( NrmSGrp ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 16 |  | nsgsubg | ⊢ ( 𝐾  ∈  ( NrmSGrp ‘ ( 𝐺  ↾s  𝑁 ) )  →  𝐾  ∈  ( SubGrp ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ∈  ( SubGrp ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 18 | 13 17 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 19 | 10 1 5 | nmzsubg | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 21 | 14 | subgbas | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  =  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  𝑁  =  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 23 | 1 | subgss | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  ⊆  𝑋 ) | 
						
							| 24 | 20 23 | syl | ⊢ ( 𝜑  →  𝑁  ⊆  𝑋 ) | 
						
							| 25 | 3 24 | ssfid | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 26 | 22 25 | eqeltrrd | ⊢ ( 𝜑  →  ( Base ‘ ( 𝐺  ↾s  𝑁 ) )  ∈  Fin ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝑁 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) | 
						
							| 28 | 27 | lagsubg | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ ( 𝐺  ↾s  𝑁 ) )  ∧  ( Base ‘ ( 𝐺  ↾s  𝑁 ) )  ∈  Fin )  →  ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) ) | 
						
							| 29 | 18 26 28 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) ) | 
						
							| 30 | 22 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑁 )  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) ) | 
						
							| 31 | 29 30 | breqtrrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑁 ) ) | 
						
							| 32 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 33 | 32 | subg0cl | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝐾 ) | 
						
							| 34 | 13 33 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝐾 ) | 
						
							| 35 | 34 | ne0d | ⊢ ( 𝜑  →  𝐾  ≠  ∅ ) | 
						
							| 36 | 1 | subgss | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 ) | 
						
							| 37 | 13 36 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  𝑋 ) | 
						
							| 38 | 3 37 | ssfid | ⊢ ( 𝜑  →  𝐾  ∈  Fin ) | 
						
							| 39 |  | hashnncl | ⊢ ( 𝐾  ∈  Fin  →  ( ( ♯ ‘ 𝐾 )  ∈  ℕ  ↔  𝐾  ≠  ∅ ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐾 )  ∈  ℕ  ↔  𝐾  ≠  ∅ ) ) | 
						
							| 41 | 35 40 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∈  ℕ ) | 
						
							| 42 | 41 | nnzd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∈  ℤ ) | 
						
							| 43 |  | hashcl | ⊢ ( 𝑁  ∈  Fin  →  ( ♯ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 44 | 25 43 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 45 | 44 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 46 |  | pwfi | ⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin ) | 
						
							| 47 | 3 46 | sylib | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  Fin ) | 
						
							| 48 |  | eqid | ⊢ ( 𝐺  ~QG  𝑁 )  =  ( 𝐺  ~QG  𝑁 ) | 
						
							| 49 | 1 48 | eqger | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ~QG  𝑁 )  Er  𝑋 ) | 
						
							| 50 | 20 49 | syl | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  Er  𝑋 ) | 
						
							| 51 | 50 | qsss | ⊢ ( 𝜑  →  ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) )  ⊆  𝒫  𝑋 ) | 
						
							| 52 | 47 51 | ssfid | ⊢ ( 𝜑  →  ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) )  ∈  Fin ) | 
						
							| 53 |  | hashcl | ⊢ ( ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) )  ∈  Fin  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 55 | 54 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 56 |  | dvdscmul | ⊢ ( ( ( ♯ ‘ 𝐾 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℤ )  →  ( ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑁 )  →  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝐾 ) )  ∥  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) ) | 
						
							| 57 | 42 45 55 56 | syl3anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑁 )  →  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝐾 ) )  ∥  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) ) | 
						
							| 58 | 31 57 | mpd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝐾 ) )  ∥  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) | 
						
							| 59 |  | hashcl | ⊢ ( 𝑋  ∈  Fin  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 60 | 3 59 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 61 | 60 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 62 | 41 | nncnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 63 | 41 | nnne0d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ≠  0 ) | 
						
							| 64 | 61 62 63 | divcan1d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ·  ( ♯ ‘ 𝐾 ) )  =  ( ♯ ‘ 𝑋 ) ) | 
						
							| 65 | 1 48 20 3 | lagsubg2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) | 
						
							| 66 | 64 65 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ·  ( ♯ ‘ 𝐾 ) )  =  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) | 
						
							| 67 | 58 66 | breqtrrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝐾 ) )  ∥  ( ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ·  ( ♯ ‘ 𝐾 ) ) ) | 
						
							| 68 | 1 | lagsubg | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 69 | 13 3 68 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 70 | 60 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℤ ) | 
						
							| 71 |  | dvdsval2 | ⊢ ( ( ( ♯ ‘ 𝐾 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐾 )  ≠  0  ∧  ( ♯ ‘ 𝑋 )  ∈  ℤ )  →  ( ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑋 )  ↔  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ∈  ℤ ) ) | 
						
							| 72 | 42 63 70 71 | syl3anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐾 )  ∥  ( ♯ ‘ 𝑋 )  ↔  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ∈  ℤ ) ) | 
						
							| 73 | 69 72 | mpbid | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ∈  ℤ ) | 
						
							| 74 |  | dvdsmulcr | ⊢ ( ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝐾 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐾 )  ≠  0 ) )  →  ( ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝐾 ) )  ∥  ( ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ·  ( ♯ ‘ 𝐾 ) )  ↔  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∥  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) ) ) ) | 
						
							| 75 | 55 73 42 63 74 | syl112anc | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝐾 ) )  ∥  ( ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  ·  ( ♯ ‘ 𝐾 ) )  ↔  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∥  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) ) ) ) | 
						
							| 76 | 67 75 | mpbid | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∥  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) ) ) | 
						
							| 77 | 1 3 8 | slwhash | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  =  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 79 | 76 78 | breqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 80 | 11 79 | eqbrtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) |