| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow3.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | sylow3.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | sylow3.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | sylow3lem1.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow3lem1.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 |  | sylow3lem1.m | ⊢  ⊕   =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 8 |  | sylow3lem2.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 9 |  | sylow3lem2.h | ⊢ 𝐻  =  { 𝑢  ∈  𝑋  ∣  ( 𝑢  ⊕  𝐾 )  =  𝐾 } | 
						
							| 10 |  | sylow3lem2.n | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝐾  ↔  ( 𝑦  +  𝑥 )  ∈  𝐾 ) } | 
						
							| 11 |  | pwfi | ⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin ) | 
						
							| 12 | 3 11 | sylib | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  Fin ) | 
						
							| 13 |  | slwsubg | ⊢ ( 𝑥  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 14 | 1 | subgss | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑥  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 16 | 13 15 | elpwd | ⊢ ( 𝑥  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 17 | 16 | ssriv | ⊢ ( 𝑃  pSyl  𝐺 )  ⊆  𝒫  𝑋 | 
						
							| 18 |  | ssfi | ⊢ ( ( 𝒫  𝑋  ∈  Fin  ∧  ( 𝑃  pSyl  𝐺 )  ⊆  𝒫  𝑋 )  →  ( 𝑃  pSyl  𝐺 )  ∈  Fin ) | 
						
							| 19 | 12 17 18 | sylancl | ⊢ ( 𝜑  →  ( 𝑃  pSyl  𝐺 )  ∈  Fin ) | 
						
							| 20 |  | hashcl | ⊢ ( ( 𝑃  pSyl  𝐺 )  ∈  Fin  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℕ0 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℕ0 ) | 
						
							| 22 | 21 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℂ ) | 
						
							| 23 | 10 1 5 | nmzsubg | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝐺  ~QG  𝑁 )  =  ( 𝐺  ~QG  𝑁 ) | 
						
							| 25 | 1 24 | eqger | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ~QG  𝑁 )  Er  𝑋 ) | 
						
							| 26 | 2 23 25 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  ~QG  𝑁 )  Er  𝑋 ) | 
						
							| 27 | 26 | qsss | ⊢ ( 𝜑  →  ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) )  ⊆  𝒫  𝑋 ) | 
						
							| 28 | 12 27 | ssfid | ⊢ ( 𝜑  →  ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) )  ∈  Fin ) | 
						
							| 29 |  | hashcl | ⊢ ( ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) )  ∈  Fin  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 31 | 30 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ∈  ℂ ) | 
						
							| 32 | 2 23 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 33 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 34 | 33 | subg0cl | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝑁 ) | 
						
							| 35 |  | ne0i | ⊢ ( ( 0g ‘ 𝐺 )  ∈  𝑁  →  𝑁  ≠  ∅ ) | 
						
							| 36 | 32 34 35 | 3syl | ⊢ ( 𝜑  →  𝑁  ≠  ∅ ) | 
						
							| 37 | 1 | subgss | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  ⊆  𝑋 ) | 
						
							| 38 | 2 23 37 | 3syl | ⊢ ( 𝜑  →  𝑁  ⊆  𝑋 ) | 
						
							| 39 | 3 38 | ssfid | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 40 |  | hashnncl | ⊢ ( 𝑁  ∈  Fin  →  ( ( ♯ ‘ 𝑁 )  ∈  ℕ  ↔  𝑁  ≠  ∅ ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑁 )  ∈  ℕ  ↔  𝑁  ≠  ∅ ) ) | 
						
							| 42 | 36 41 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 43 | 42 | nncnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 44 | 42 | nnne0d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑁 )  ≠  0 ) | 
						
							| 45 | 1 2 3 4 5 6 7 | sylow3lem1 | ⊢ ( 𝜑  →   ⊕   ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) | 
						
							| 46 |  | eqid | ⊢ ( 𝐺  ~QG  𝐻 )  =  ( 𝐺  ~QG  𝐻 ) | 
						
							| 47 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } | 
						
							| 48 | 1 9 46 47 | orbsta2 | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } )  ·  ( ♯ ‘ 𝐻 ) ) ) | 
						
							| 49 | 45 8 3 48 | syl21anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } )  ·  ( ♯ ‘ 𝐻 ) ) ) | 
						
							| 50 | 1 24 32 3 | lagsubg2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) | 
						
							| 51 | 47 1 | gaorber | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  Er  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 52 | 45 51 | syl | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  Er  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 53 | 52 | ecss | ⊢ ( 𝜑  →  [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  ⊆  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 54 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 56 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑋  ∈  Fin ) | 
						
							| 57 | 1 56 55 54 5 6 | sylow2 | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ∃ 𝑢  ∈  𝑋 ℎ  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) | 
						
							| 58 |  | eqcom | ⊢ ( ( 𝑢  ⊕  𝐾 )  =  ℎ  ↔  ℎ  =  ( 𝑢  ⊕  𝐾 ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑢  ∈  𝑋 )  →  𝑢  ∈  𝑋 ) | 
						
							| 60 | 54 | adantr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑢  ∈  𝑋 )  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 61 |  | mptexg | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) )  ∈  V ) | 
						
							| 62 |  | rnexg | ⊢ ( ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) )  ∈  V  →  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) )  ∈  V ) | 
						
							| 63 | 60 61 62 | 3syl | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑢  ∈  𝑋 )  →  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) )  ∈  V ) | 
						
							| 64 |  | simpr | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝐾 )  →  𝑦  =  𝐾 ) | 
						
							| 65 |  | simpl | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝐾 )  →  𝑥  =  𝑢 ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝐾 )  →  ( 𝑥  +  𝑧 )  =  ( 𝑢  +  𝑧 ) ) | 
						
							| 67 | 66 65 | oveq12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝐾 )  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) | 
						
							| 68 | 64 67 | mpteq12dv | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝐾 )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) | 
						
							| 69 | 68 | rneqd | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝐾 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) | 
						
							| 70 | 69 7 | ovmpoga | ⊢ ( ( 𝑢  ∈  𝑋  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) )  ∈  V )  →  ( 𝑢  ⊕  𝐾 )  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) | 
						
							| 71 | 59 60 63 70 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑢  ∈  𝑋 )  →  ( 𝑢  ⊕  𝐾 )  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) | 
						
							| 72 | 71 | eqeq2d | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑢  ∈  𝑋 )  →  ( ℎ  =  ( 𝑢  ⊕  𝐾 )  ↔  ℎ  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) ) | 
						
							| 73 | 58 72 | bitrid | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑢  ⊕  𝐾 )  =  ℎ  ↔  ℎ  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) ) | 
						
							| 74 | 73 | rexbidva | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ∃ 𝑢  ∈  𝑋 ( 𝑢  ⊕  𝐾 )  =  ℎ  ↔  ∃ 𝑢  ∈  𝑋 ℎ  =  ran  ( 𝑧  ∈  𝐾  ↦  ( ( 𝑢  +  𝑧 )  −  𝑢 ) ) ) ) | 
						
							| 75 | 57 74 | mpbird | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ∃ 𝑢  ∈  𝑋 ( 𝑢  ⊕  𝐾 )  =  ℎ ) | 
						
							| 76 | 47 | gaorb | ⊢ ( 𝐾 { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } ℎ  ↔  ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑢  ∈  𝑋 ( 𝑢  ⊕  𝐾 )  =  ℎ ) ) | 
						
							| 77 | 54 55 75 76 | syl3anbrc | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐾 { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } ℎ ) | 
						
							| 78 |  | elecg | ⊢ ( ( ℎ  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ℎ  ∈  [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  ↔  𝐾 { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } ℎ ) ) | 
						
							| 79 | 55 54 78 | syl2anc | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ℎ  ∈  [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  ↔  𝐾 { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } ℎ ) ) | 
						
							| 80 | 77 79 | mpbird | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ℎ  ∈  [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } ) | 
						
							| 81 | 53 80 | eqelssd | ⊢ ( 𝜑  →  [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) }  =  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 82 | 81 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } )  =  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) ) ) | 
						
							| 83 | 1 2 3 4 5 6 7 8 9 10 | sylow3lem2 | ⊢ ( 𝜑  →  𝐻  =  𝑁 ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ 𝑁 ) ) | 
						
							| 85 | 82 84 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ [ 𝐾 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } )  ·  ( ♯ ‘ 𝐻 ) )  =  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ·  ( ♯ ‘ 𝑁 ) ) ) | 
						
							| 86 | 49 50 85 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ·  ( ♯ ‘ 𝑁 ) )  =  ( ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) )  ·  ( ♯ ‘ 𝑁 ) ) ) | 
						
							| 87 | 22 31 43 44 86 | mulcan2ad | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  =  ( ♯ ‘ ( 𝑋  /  ( 𝐺  ~QG  𝑁 ) ) ) ) |