| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  | 
						
							| 2 |  | sylow3.g |  | 
						
							| 3 |  | sylow3.xf |  | 
						
							| 4 |  | sylow3.p |  | 
						
							| 5 |  | sylow3lem1.a |  | 
						
							| 6 |  | sylow3lem1.d |  | 
						
							| 7 |  | sylow3lem1.m |  | 
						
							| 8 |  | sylow3lem2.k |  | 
						
							| 9 |  | sylow3lem2.h |  | 
						
							| 10 |  | sylow3lem2.n |  | 
						
							| 11 |  | pwfi |  | 
						
							| 12 | 3 11 | sylib |  | 
						
							| 13 |  | slwsubg |  | 
						
							| 14 | 1 | subgss |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 13 15 | elpwd |  | 
						
							| 17 | 16 | ssriv |  | 
						
							| 18 |  | ssfi |  | 
						
							| 19 | 12 17 18 | sylancl |  | 
						
							| 20 |  | hashcl |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 21 | nn0cnd |  | 
						
							| 23 | 10 1 5 | nmzsubg |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 1 24 | eqger |  | 
						
							| 26 | 2 23 25 | 3syl |  | 
						
							| 27 | 26 | qsss |  | 
						
							| 28 | 12 27 | ssfid |  | 
						
							| 29 |  | hashcl |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 30 | nn0cnd |  | 
						
							| 32 | 2 23 | syl |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 | subg0cl |  | 
						
							| 35 |  | ne0i |  | 
						
							| 36 | 32 34 35 | 3syl |  | 
						
							| 37 | 1 | subgss |  | 
						
							| 38 | 2 23 37 | 3syl |  | 
						
							| 39 | 3 38 | ssfid |  | 
						
							| 40 |  | hashnncl |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 | 36 41 | mpbird |  | 
						
							| 43 | 42 | nncnd |  | 
						
							| 44 | 42 | nnne0d |  | 
						
							| 45 | 1 2 3 4 5 6 7 | sylow3lem1 |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 1 9 46 47 | orbsta2 |  | 
						
							| 49 | 45 8 3 48 | syl21anc |  | 
						
							| 50 | 1 24 32 3 | lagsubg2 |  | 
						
							| 51 | 47 1 | gaorber |  | 
						
							| 52 | 45 51 | syl |  | 
						
							| 53 | 52 | ecss |  | 
						
							| 54 | 8 | adantr |  | 
						
							| 55 |  | simpr |  | 
						
							| 56 | 3 | adantr |  | 
						
							| 57 | 1 56 55 54 5 6 | sylow2 |  | 
						
							| 58 |  | eqcom |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 | 54 | adantr |  | 
						
							| 61 |  | mptexg |  | 
						
							| 62 |  | rnexg |  | 
						
							| 63 | 60 61 62 | 3syl |  | 
						
							| 64 |  | simpr |  | 
						
							| 65 |  | simpl |  | 
						
							| 66 | 65 | oveq1d |  | 
						
							| 67 | 66 65 | oveq12d |  | 
						
							| 68 | 64 67 | mpteq12dv |  | 
						
							| 69 | 68 | rneqd |  | 
						
							| 70 | 69 7 | ovmpoga |  | 
						
							| 71 | 59 60 63 70 | syl3anc |  | 
						
							| 72 | 71 | eqeq2d |  | 
						
							| 73 | 58 72 | bitrid |  | 
						
							| 74 | 73 | rexbidva |  | 
						
							| 75 | 57 74 | mpbird |  | 
						
							| 76 | 47 | gaorb |  | 
						
							| 77 | 54 55 75 76 | syl3anbrc |  | 
						
							| 78 |  | elecg |  | 
						
							| 79 | 55 54 78 | syl2anc |  | 
						
							| 80 | 77 79 | mpbird |  | 
						
							| 81 | 53 80 | eqelssd |  | 
						
							| 82 | 81 | fveq2d |  | 
						
							| 83 | 1 2 3 4 5 6 7 8 9 10 | sylow3lem2 |  | 
						
							| 84 | 83 | fveq2d |  | 
						
							| 85 | 82 84 | oveq12d |  | 
						
							| 86 | 49 50 85 | 3eqtr3rd |  | 
						
							| 87 | 22 31 43 44 86 | mulcan2ad |  |