| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  | 
						
							| 2 |  | sylow3.g |  | 
						
							| 3 |  | sylow3.xf |  | 
						
							| 4 |  | sylow3.p |  | 
						
							| 5 |  | sylow3lem1.a |  | 
						
							| 6 |  | sylow3lem1.d |  | 
						
							| 7 |  | sylow3lem1.m |  | 
						
							| 8 |  | sylow3lem2.k |  | 
						
							| 9 |  | sylow3lem2.h |  | 
						
							| 10 |  | sylow3lem2.n |  | 
						
							| 11 | 10 | ssrab3 |  | 
						
							| 12 |  | sseqin2 |  | 
						
							| 13 | 11 12 | mpbi |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 8 | adantr |  | 
						
							| 16 |  | mptexg |  | 
						
							| 17 |  | rnexg |  | 
						
							| 18 | 15 16 17 | 3syl |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 |  | simpl |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 21 20 | oveq12d |  | 
						
							| 23 | 19 22 | mpteq12dv |  | 
						
							| 24 | 23 | rneqd |  | 
						
							| 25 | 24 7 | ovmpoga |  | 
						
							| 26 | 14 15 18 25 | syl3anc |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | slwsubg |  | 
						
							| 29 | 8 28 | syl |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 1 5 6 31 10 | conjnmz |  | 
						
							| 33 | 30 32 | sylan |  | 
						
							| 34 | 27 33 | eqtr4d |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 |  | simprl |  | 
						
							| 37 | 26 | adantr |  | 
						
							| 38 | 36 37 | eqtr3d |  | 
						
							| 39 | 38 | eleq2d |  | 
						
							| 40 |  | ovex |  | 
						
							| 41 |  | eqeq1 |  | 
						
							| 42 | 41 | rexbidv |  | 
						
							| 43 | 31 | rnmpt |  | 
						
							| 44 | 40 42 43 | elab2 |  | 
						
							| 45 |  | simprr |  | 
						
							| 46 | 2 | ad3antrrr |  | 
						
							| 47 |  | simpllr |  | 
						
							| 48 | 1 | subgss |  | 
						
							| 49 | 29 48 | syl |  | 
						
							| 50 | 49 | ad3antrrr |  | 
						
							| 51 |  | simprl |  | 
						
							| 52 | 50 51 | sseldd |  | 
						
							| 53 | 1 5 6 | grpaddsubass |  | 
						
							| 54 | 46 47 52 47 53 | syl13anc |  | 
						
							| 55 | 45 54 | eqtr2d |  | 
						
							| 56 | 1 6 | grpsubcl |  | 
						
							| 57 | 46 52 47 56 | syl3anc |  | 
						
							| 58 |  | simplrr |  | 
						
							| 59 | 1 5 | grplcan |  | 
						
							| 60 | 46 57 58 47 59 | syl13anc |  | 
						
							| 61 | 55 60 | mpbid |  | 
						
							| 62 | 1 5 6 | grpsubadd |  | 
						
							| 63 | 46 52 47 58 62 | syl13anc |  | 
						
							| 64 | 61 63 | mpbid |  | 
						
							| 65 | 64 51 | eqeltrd |  | 
						
							| 66 | 65 | rexlimdvaa |  | 
						
							| 67 | 44 66 | biimtrid |  | 
						
							| 68 |  | simpr |  | 
						
							| 69 |  | oveq2 |  | 
						
							| 70 | 69 | oveq1d |  | 
						
							| 71 |  | ovex |  | 
						
							| 72 | 70 31 71 | fvmpt |  | 
						
							| 73 | 68 72 | syl |  | 
						
							| 74 | 2 | ad3antrrr |  | 
						
							| 75 |  | simpllr |  | 
						
							| 76 |  | simplrr |  | 
						
							| 77 | 1 5 | grpass |  | 
						
							| 78 | 74 75 76 75 77 | syl13anc |  | 
						
							| 79 | 78 | oveq1d |  | 
						
							| 80 | 1 5 | grpcl |  | 
						
							| 81 | 74 75 76 80 | syl3anc |  | 
						
							| 82 | 1 5 6 | grppncan |  | 
						
							| 83 | 74 81 75 82 | syl3anc |  | 
						
							| 84 | 73 79 83 | 3eqtr2d |  | 
						
							| 85 |  | ovex |  | 
						
							| 86 | 85 31 | fnmpti |  | 
						
							| 87 |  | fnfvelrn |  | 
						
							| 88 | 86 68 87 | sylancr |  | 
						
							| 89 | 84 88 | eqeltrrd |  | 
						
							| 90 | 89 | ex |  | 
						
							| 91 | 67 90 | impbid |  | 
						
							| 92 | 39 91 | bitrd |  | 
						
							| 93 | 92 | anassrs |  | 
						
							| 94 | 93 | ralrimiva |  | 
						
							| 95 | 10 | elnmz |  | 
						
							| 96 | 35 94 95 | sylanbrc |  | 
						
							| 97 | 34 96 | impbida |  | 
						
							| 98 | 97 | rabbi2dva |  | 
						
							| 99 | 13 98 | eqtr3id |  | 
						
							| 100 | 9 99 | eqtr4id |  |