| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow3.g |  |-  ( ph -> G e. Grp ) | 
						
							| 3 |  | sylow3.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 4 |  | sylow3.p |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | sylow3lem1.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow3lem1.d |  |-  .- = ( -g ` G ) | 
						
							| 7 |  | sylow3lem1.m |  |-  .(+) = ( x e. X , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) ) | 
						
							| 8 |  | sylow3lem2.k |  |-  ( ph -> K e. ( P pSyl G ) ) | 
						
							| 9 |  | sylow3lem2.h |  |-  H = { u e. X | ( u .(+) K ) = K } | 
						
							| 10 |  | sylow3lem2.n |  |-  N = { x e. X | A. y e. X ( ( x .+ y ) e. K <-> ( y .+ x ) e. K ) } | 
						
							| 11 | 10 | ssrab3 |  |-  N C_ X | 
						
							| 12 |  | sseqin2 |  |-  ( N C_ X <-> ( X i^i N ) = N ) | 
						
							| 13 | 11 12 | mpbi |  |-  ( X i^i N ) = N | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ u e. X ) -> u e. X ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ph /\ u e. X ) -> K e. ( P pSyl G ) ) | 
						
							| 16 |  | mptexg |  |-  ( K e. ( P pSyl G ) -> ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) | 
						
							| 17 |  | rnexg |  |-  ( ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V -> ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) | 
						
							| 18 | 15 16 17 | 3syl |  |-  ( ( ph /\ u e. X ) -> ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) | 
						
							| 19 |  | simpr |  |-  ( ( x = u /\ y = K ) -> y = K ) | 
						
							| 20 |  | simpl |  |-  ( ( x = u /\ y = K ) -> x = u ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( x = u /\ y = K ) -> ( x .+ z ) = ( u .+ z ) ) | 
						
							| 22 | 21 20 | oveq12d |  |-  ( ( x = u /\ y = K ) -> ( ( x .+ z ) .- x ) = ( ( u .+ z ) .- u ) ) | 
						
							| 23 | 19 22 | mpteq12dv |  |-  ( ( x = u /\ y = K ) -> ( z e. y |-> ( ( x .+ z ) .- x ) ) = ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 24 | 23 | rneqd |  |-  ( ( x = u /\ y = K ) -> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 25 | 24 7 | ovmpoga |  |-  ( ( u e. X /\ K e. ( P pSyl G ) /\ ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 26 | 14 15 18 25 | syl3anc |  |-  ( ( ph /\ u e. X ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ph /\ u e. X ) /\ u e. N ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 28 |  | slwsubg |  |-  ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) | 
						
							| 29 | 8 28 | syl |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ u e. X ) -> K e. ( SubGrp ` G ) ) | 
						
							| 31 |  | eqid |  |-  ( z e. K |-> ( ( u .+ z ) .- u ) ) = ( z e. K |-> ( ( u .+ z ) .- u ) ) | 
						
							| 32 | 1 5 6 31 10 | conjnmz |  |-  ( ( K e. ( SubGrp ` G ) /\ u e. N ) -> K = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 33 | 30 32 | sylan |  |-  ( ( ( ph /\ u e. X ) /\ u e. N ) -> K = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 34 | 27 33 | eqtr4d |  |-  ( ( ( ph /\ u e. X ) /\ u e. N ) -> ( u .(+) K ) = K ) | 
						
							| 35 |  | simplr |  |-  ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) -> u e. X ) | 
						
							| 36 |  | simprl |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( u .(+) K ) = K ) | 
						
							| 37 | 26 | adantr |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 38 | 36 37 | eqtr3d |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> K = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 39 | 38 | eleq2d |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. K <-> ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) | 
						
							| 40 |  | ovex |  |-  ( u .+ w ) e. _V | 
						
							| 41 |  | eqeq1 |  |-  ( v = ( u .+ w ) -> ( v = ( ( u .+ z ) .- u ) <-> ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) | 
						
							| 42 | 41 | rexbidv |  |-  ( v = ( u .+ w ) -> ( E. z e. K v = ( ( u .+ z ) .- u ) <-> E. z e. K ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) | 
						
							| 43 | 31 | rnmpt |  |-  ran ( z e. K |-> ( ( u .+ z ) .- u ) ) = { v | E. z e. K v = ( ( u .+ z ) .- u ) } | 
						
							| 44 | 40 42 43 | elab2 |  |-  ( ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) <-> E. z e. K ( u .+ w ) = ( ( u .+ z ) .- u ) ) | 
						
							| 45 |  | simprr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( u .+ w ) = ( ( u .+ z ) .- u ) ) | 
						
							| 46 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> G e. Grp ) | 
						
							| 47 |  | simpllr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> u e. X ) | 
						
							| 48 | 1 | subgss |  |-  ( K e. ( SubGrp ` G ) -> K C_ X ) | 
						
							| 49 | 29 48 | syl |  |-  ( ph -> K C_ X ) | 
						
							| 50 | 49 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> K C_ X ) | 
						
							| 51 |  | simprl |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> z e. K ) | 
						
							| 52 | 50 51 | sseldd |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> z e. X ) | 
						
							| 53 | 1 5 6 | grpaddsubass |  |-  ( ( G e. Grp /\ ( u e. X /\ z e. X /\ u e. X ) ) -> ( ( u .+ z ) .- u ) = ( u .+ ( z .- u ) ) ) | 
						
							| 54 | 46 47 52 47 53 | syl13anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( ( u .+ z ) .- u ) = ( u .+ ( z .- u ) ) ) | 
						
							| 55 | 45 54 | eqtr2d |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( u .+ ( z .- u ) ) = ( u .+ w ) ) | 
						
							| 56 | 1 6 | grpsubcl |  |-  ( ( G e. Grp /\ z e. X /\ u e. X ) -> ( z .- u ) e. X ) | 
						
							| 57 | 46 52 47 56 | syl3anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( z .- u ) e. X ) | 
						
							| 58 |  | simplrr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> w e. X ) | 
						
							| 59 | 1 5 | grplcan |  |-  ( ( G e. Grp /\ ( ( z .- u ) e. X /\ w e. X /\ u e. X ) ) -> ( ( u .+ ( z .- u ) ) = ( u .+ w ) <-> ( z .- u ) = w ) ) | 
						
							| 60 | 46 57 58 47 59 | syl13anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( ( u .+ ( z .- u ) ) = ( u .+ w ) <-> ( z .- u ) = w ) ) | 
						
							| 61 | 55 60 | mpbid |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( z .- u ) = w ) | 
						
							| 62 | 1 5 6 | grpsubadd |  |-  ( ( G e. Grp /\ ( z e. X /\ u e. X /\ w e. X ) ) -> ( ( z .- u ) = w <-> ( w .+ u ) = z ) ) | 
						
							| 63 | 46 52 47 58 62 | syl13anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( ( z .- u ) = w <-> ( w .+ u ) = z ) ) | 
						
							| 64 | 61 63 | mpbid |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( w .+ u ) = z ) | 
						
							| 65 | 64 51 | eqeltrd |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( w .+ u ) e. K ) | 
						
							| 66 | 65 | rexlimdvaa |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( E. z e. K ( u .+ w ) = ( ( u .+ z ) .- u ) -> ( w .+ u ) e. K ) ) | 
						
							| 67 | 44 66 | biimtrid |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) -> ( w .+ u ) e. K ) ) | 
						
							| 68 |  | simpr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( w .+ u ) e. K ) | 
						
							| 69 |  | oveq2 |  |-  ( z = ( w .+ u ) -> ( u .+ z ) = ( u .+ ( w .+ u ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( z = ( w .+ u ) -> ( ( u .+ z ) .- u ) = ( ( u .+ ( w .+ u ) ) .- u ) ) | 
						
							| 71 |  | ovex |  |-  ( ( u .+ ( w .+ u ) ) .- u ) e. _V | 
						
							| 72 | 70 31 71 | fvmpt |  |-  ( ( w .+ u ) e. K -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) = ( ( u .+ ( w .+ u ) ) .- u ) ) | 
						
							| 73 | 68 72 | syl |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) = ( ( u .+ ( w .+ u ) ) .- u ) ) | 
						
							| 74 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> G e. Grp ) | 
						
							| 75 |  | simpllr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> u e. X ) | 
						
							| 76 |  | simplrr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> w e. X ) | 
						
							| 77 | 1 5 | grpass |  |-  ( ( G e. Grp /\ ( u e. X /\ w e. X /\ u e. X ) ) -> ( ( u .+ w ) .+ u ) = ( u .+ ( w .+ u ) ) ) | 
						
							| 78 | 74 75 76 75 77 | syl13anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( u .+ w ) .+ u ) = ( u .+ ( w .+ u ) ) ) | 
						
							| 79 | 78 | oveq1d |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( ( u .+ w ) .+ u ) .- u ) = ( ( u .+ ( w .+ u ) ) .- u ) ) | 
						
							| 80 | 1 5 | grpcl |  |-  ( ( G e. Grp /\ u e. X /\ w e. X ) -> ( u .+ w ) e. X ) | 
						
							| 81 | 74 75 76 80 | syl3anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( u .+ w ) e. X ) | 
						
							| 82 | 1 5 6 | grppncan |  |-  ( ( G e. Grp /\ ( u .+ w ) e. X /\ u e. X ) -> ( ( ( u .+ w ) .+ u ) .- u ) = ( u .+ w ) ) | 
						
							| 83 | 74 81 75 82 | syl3anc |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( ( u .+ w ) .+ u ) .- u ) = ( u .+ w ) ) | 
						
							| 84 | 73 79 83 | 3eqtr2d |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) = ( u .+ w ) ) | 
						
							| 85 |  | ovex |  |-  ( ( u .+ z ) .- u ) e. _V | 
						
							| 86 | 85 31 | fnmpti |  |-  ( z e. K |-> ( ( u .+ z ) .- u ) ) Fn K | 
						
							| 87 |  | fnfvelrn |  |-  ( ( ( z e. K |-> ( ( u .+ z ) .- u ) ) Fn K /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 88 | 86 68 87 | sylancr |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 89 | 84 88 | eqeltrrd |  |-  ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 90 | 89 | ex |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( w .+ u ) e. K -> ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) | 
						
							| 91 | 67 90 | impbid |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) <-> ( w .+ u ) e. K ) ) | 
						
							| 92 | 39 91 | bitrd |  |-  ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) | 
						
							| 93 | 92 | anassrs |  |-  ( ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) /\ w e. X ) -> ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) | 
						
							| 94 | 93 | ralrimiva |  |-  ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) -> A. w e. X ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) | 
						
							| 95 | 10 | elnmz |  |-  ( u e. N <-> ( u e. X /\ A. w e. X ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) ) | 
						
							| 96 | 35 94 95 | sylanbrc |  |-  ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) -> u e. N ) | 
						
							| 97 | 34 96 | impbida |  |-  ( ( ph /\ u e. X ) -> ( u e. N <-> ( u .(+) K ) = K ) ) | 
						
							| 98 | 97 | rabbi2dva |  |-  ( ph -> ( X i^i N ) = { u e. X | ( u .(+) K ) = K } ) | 
						
							| 99 | 13 98 | eqtr3id |  |-  ( ph -> N = { u e. X | ( u .(+) K ) = K } ) | 
						
							| 100 | 9 99 | eqtr4id |  |-  ( ph -> H = N ) |