| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow3.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow3.g |
|- ( ph -> G e. Grp ) |
| 3 |
|
sylow3.xf |
|- ( ph -> X e. Fin ) |
| 4 |
|
sylow3.p |
|- ( ph -> P e. Prime ) |
| 5 |
|
sylow3lem1.a |
|- .+ = ( +g ` G ) |
| 6 |
|
sylow3lem1.d |
|- .- = ( -g ` G ) |
| 7 |
|
sylow3lem1.m |
|- .(+) = ( x e. X , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) ) |
| 8 |
|
sylow3lem2.k |
|- ( ph -> K e. ( P pSyl G ) ) |
| 9 |
|
sylow3lem2.h |
|- H = { u e. X | ( u .(+) K ) = K } |
| 10 |
|
sylow3lem2.n |
|- N = { x e. X | A. y e. X ( ( x .+ y ) e. K <-> ( y .+ x ) e. K ) } |
| 11 |
10
|
ssrab3 |
|- N C_ X |
| 12 |
|
sseqin2 |
|- ( N C_ X <-> ( X i^i N ) = N ) |
| 13 |
11 12
|
mpbi |
|- ( X i^i N ) = N |
| 14 |
|
simpr |
|- ( ( ph /\ u e. X ) -> u e. X ) |
| 15 |
8
|
adantr |
|- ( ( ph /\ u e. X ) -> K e. ( P pSyl G ) ) |
| 16 |
|
mptexg |
|- ( K e. ( P pSyl G ) -> ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) |
| 17 |
|
rnexg |
|- ( ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V -> ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) |
| 18 |
15 16 17
|
3syl |
|- ( ( ph /\ u e. X ) -> ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) |
| 19 |
|
simpr |
|- ( ( x = u /\ y = K ) -> y = K ) |
| 20 |
|
simpl |
|- ( ( x = u /\ y = K ) -> x = u ) |
| 21 |
20
|
oveq1d |
|- ( ( x = u /\ y = K ) -> ( x .+ z ) = ( u .+ z ) ) |
| 22 |
21 20
|
oveq12d |
|- ( ( x = u /\ y = K ) -> ( ( x .+ z ) .- x ) = ( ( u .+ z ) .- u ) ) |
| 23 |
19 22
|
mpteq12dv |
|- ( ( x = u /\ y = K ) -> ( z e. y |-> ( ( x .+ z ) .- x ) ) = ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 24 |
23
|
rneqd |
|- ( ( x = u /\ y = K ) -> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 25 |
24 7
|
ovmpoga |
|- ( ( u e. X /\ K e. ( P pSyl G ) /\ ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 26 |
14 15 18 25
|
syl3anc |
|- ( ( ph /\ u e. X ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ( ph /\ u e. X ) /\ u e. N ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 28 |
|
slwsubg |
|- ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) |
| 29 |
8 28
|
syl |
|- ( ph -> K e. ( SubGrp ` G ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ u e. X ) -> K e. ( SubGrp ` G ) ) |
| 31 |
|
eqid |
|- ( z e. K |-> ( ( u .+ z ) .- u ) ) = ( z e. K |-> ( ( u .+ z ) .- u ) ) |
| 32 |
1 5 6 31 10
|
conjnmz |
|- ( ( K e. ( SubGrp ` G ) /\ u e. N ) -> K = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 33 |
30 32
|
sylan |
|- ( ( ( ph /\ u e. X ) /\ u e. N ) -> K = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 34 |
27 33
|
eqtr4d |
|- ( ( ( ph /\ u e. X ) /\ u e. N ) -> ( u .(+) K ) = K ) |
| 35 |
|
simplr |
|- ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) -> u e. X ) |
| 36 |
|
simprl |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( u .(+) K ) = K ) |
| 37 |
26
|
adantr |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 38 |
36 37
|
eqtr3d |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> K = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 39 |
38
|
eleq2d |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. K <-> ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) |
| 40 |
|
ovex |
|- ( u .+ w ) e. _V |
| 41 |
|
eqeq1 |
|- ( v = ( u .+ w ) -> ( v = ( ( u .+ z ) .- u ) <-> ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) |
| 42 |
41
|
rexbidv |
|- ( v = ( u .+ w ) -> ( E. z e. K v = ( ( u .+ z ) .- u ) <-> E. z e. K ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) |
| 43 |
31
|
rnmpt |
|- ran ( z e. K |-> ( ( u .+ z ) .- u ) ) = { v | E. z e. K v = ( ( u .+ z ) .- u ) } |
| 44 |
40 42 43
|
elab2 |
|- ( ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) <-> E. z e. K ( u .+ w ) = ( ( u .+ z ) .- u ) ) |
| 45 |
|
simprr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( u .+ w ) = ( ( u .+ z ) .- u ) ) |
| 46 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> G e. Grp ) |
| 47 |
|
simpllr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> u e. X ) |
| 48 |
1
|
subgss |
|- ( K e. ( SubGrp ` G ) -> K C_ X ) |
| 49 |
29 48
|
syl |
|- ( ph -> K C_ X ) |
| 50 |
49
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> K C_ X ) |
| 51 |
|
simprl |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> z e. K ) |
| 52 |
50 51
|
sseldd |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> z e. X ) |
| 53 |
1 5 6
|
grpaddsubass |
|- ( ( G e. Grp /\ ( u e. X /\ z e. X /\ u e. X ) ) -> ( ( u .+ z ) .- u ) = ( u .+ ( z .- u ) ) ) |
| 54 |
46 47 52 47 53
|
syl13anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( ( u .+ z ) .- u ) = ( u .+ ( z .- u ) ) ) |
| 55 |
45 54
|
eqtr2d |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( u .+ ( z .- u ) ) = ( u .+ w ) ) |
| 56 |
1 6
|
grpsubcl |
|- ( ( G e. Grp /\ z e. X /\ u e. X ) -> ( z .- u ) e. X ) |
| 57 |
46 52 47 56
|
syl3anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( z .- u ) e. X ) |
| 58 |
|
simplrr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> w e. X ) |
| 59 |
1 5
|
grplcan |
|- ( ( G e. Grp /\ ( ( z .- u ) e. X /\ w e. X /\ u e. X ) ) -> ( ( u .+ ( z .- u ) ) = ( u .+ w ) <-> ( z .- u ) = w ) ) |
| 60 |
46 57 58 47 59
|
syl13anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( ( u .+ ( z .- u ) ) = ( u .+ w ) <-> ( z .- u ) = w ) ) |
| 61 |
55 60
|
mpbid |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( z .- u ) = w ) |
| 62 |
1 5 6
|
grpsubadd |
|- ( ( G e. Grp /\ ( z e. X /\ u e. X /\ w e. X ) ) -> ( ( z .- u ) = w <-> ( w .+ u ) = z ) ) |
| 63 |
46 52 47 58 62
|
syl13anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( ( z .- u ) = w <-> ( w .+ u ) = z ) ) |
| 64 |
61 63
|
mpbid |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( w .+ u ) = z ) |
| 65 |
64 51
|
eqeltrd |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( z e. K /\ ( u .+ w ) = ( ( u .+ z ) .- u ) ) ) -> ( w .+ u ) e. K ) |
| 66 |
65
|
rexlimdvaa |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( E. z e. K ( u .+ w ) = ( ( u .+ z ) .- u ) -> ( w .+ u ) e. K ) ) |
| 67 |
44 66
|
biimtrid |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) -> ( w .+ u ) e. K ) ) |
| 68 |
|
simpr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( w .+ u ) e. K ) |
| 69 |
|
oveq2 |
|- ( z = ( w .+ u ) -> ( u .+ z ) = ( u .+ ( w .+ u ) ) ) |
| 70 |
69
|
oveq1d |
|- ( z = ( w .+ u ) -> ( ( u .+ z ) .- u ) = ( ( u .+ ( w .+ u ) ) .- u ) ) |
| 71 |
|
ovex |
|- ( ( u .+ ( w .+ u ) ) .- u ) e. _V |
| 72 |
70 31 71
|
fvmpt |
|- ( ( w .+ u ) e. K -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) = ( ( u .+ ( w .+ u ) ) .- u ) ) |
| 73 |
68 72
|
syl |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) = ( ( u .+ ( w .+ u ) ) .- u ) ) |
| 74 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> G e. Grp ) |
| 75 |
|
simpllr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> u e. X ) |
| 76 |
|
simplrr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> w e. X ) |
| 77 |
1 5
|
grpass |
|- ( ( G e. Grp /\ ( u e. X /\ w e. X /\ u e. X ) ) -> ( ( u .+ w ) .+ u ) = ( u .+ ( w .+ u ) ) ) |
| 78 |
74 75 76 75 77
|
syl13anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( u .+ w ) .+ u ) = ( u .+ ( w .+ u ) ) ) |
| 79 |
78
|
oveq1d |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( ( u .+ w ) .+ u ) .- u ) = ( ( u .+ ( w .+ u ) ) .- u ) ) |
| 80 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ u e. X /\ w e. X ) -> ( u .+ w ) e. X ) |
| 81 |
74 75 76 80
|
syl3anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( u .+ w ) e. X ) |
| 82 |
1 5 6
|
grppncan |
|- ( ( G e. Grp /\ ( u .+ w ) e. X /\ u e. X ) -> ( ( ( u .+ w ) .+ u ) .- u ) = ( u .+ w ) ) |
| 83 |
74 81 75 82
|
syl3anc |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( ( u .+ w ) .+ u ) .- u ) = ( u .+ w ) ) |
| 84 |
73 79 83
|
3eqtr2d |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) = ( u .+ w ) ) |
| 85 |
|
ovex |
|- ( ( u .+ z ) .- u ) e. _V |
| 86 |
85 31
|
fnmpti |
|- ( z e. K |-> ( ( u .+ z ) .- u ) ) Fn K |
| 87 |
|
fnfvelrn |
|- ( ( ( z e. K |-> ( ( u .+ z ) .- u ) ) Fn K /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 88 |
86 68 87
|
sylancr |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( ( z e. K |-> ( ( u .+ z ) .- u ) ) ` ( w .+ u ) ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 89 |
84 88
|
eqeltrrd |
|- ( ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) /\ ( w .+ u ) e. K ) -> ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) |
| 90 |
89
|
ex |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( w .+ u ) e. K -> ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) |
| 91 |
67 90
|
impbid |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. ran ( z e. K |-> ( ( u .+ z ) .- u ) ) <-> ( w .+ u ) e. K ) ) |
| 92 |
39 91
|
bitrd |
|- ( ( ( ph /\ u e. X ) /\ ( ( u .(+) K ) = K /\ w e. X ) ) -> ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) |
| 93 |
92
|
anassrs |
|- ( ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) /\ w e. X ) -> ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) |
| 94 |
93
|
ralrimiva |
|- ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) -> A. w e. X ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) |
| 95 |
10
|
elnmz |
|- ( u e. N <-> ( u e. X /\ A. w e. X ( ( u .+ w ) e. K <-> ( w .+ u ) e. K ) ) ) |
| 96 |
35 94 95
|
sylanbrc |
|- ( ( ( ph /\ u e. X ) /\ ( u .(+) K ) = K ) -> u e. N ) |
| 97 |
34 96
|
impbida |
|- ( ( ph /\ u e. X ) -> ( u e. N <-> ( u .(+) K ) = K ) ) |
| 98 |
97
|
rabbi2dva |
|- ( ph -> ( X i^i N ) = { u e. X | ( u .(+) K ) = K } ) |
| 99 |
13 98
|
eqtr3id |
|- ( ph -> N = { u e. X | ( u .(+) K ) = K } ) |
| 100 |
9 99
|
eqtr4id |
|- ( ph -> H = N ) |