Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabbi2dva.1 | |- ( ( ph /\ x e. A ) -> ( x e. B <-> ps ) ) |
|
Assertion | rabbi2dva | |- ( ph -> ( A i^i B ) = { x e. A | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbi2dva.1 | |- ( ( ph /\ x e. A ) -> ( x e. B <-> ps ) ) |
|
2 | dfin5 | |- ( A i^i B ) = { x e. A | x e. B } |
|
3 | 1 | rabbidva | |- ( ph -> { x e. A | x e. B } = { x e. A | ps } ) |
4 | 2 3 | eqtrid | |- ( ph -> ( A i^i B ) = { x e. A | ps } ) |