Metamath Proof Explorer


Theorem rabbi2dva

Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014)

Ref Expression
Hypothesis rabbi2dva.1 φxAxBψ
Assertion rabbi2dva φAB=xA|ψ

Proof

Step Hyp Ref Expression
1 rabbi2dva.1 φxAxBψ
2 dfin5 AB=xA|xB
3 1 rabbidva φxA|xB=xA|ψ
4 2 3 eqtrid φAB=xA|ψ