Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabbi2dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝜓 ) ) | |
Assertion | rabbi2dva | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbi2dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝜓 ) ) | |
2 | dfin5 | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } | |
3 | 1 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
4 | 2 3 | eqtrid | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |