| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow3.g |  |-  ( ph -> G e. Grp ) | 
						
							| 3 |  | sylow3.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 4 |  | sylow3.p |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | sylow3lem1.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow3lem1.d |  |-  .- = ( -g ` G ) | 
						
							| 7 |  | sylow3lem1.m |  |-  .(+) = ( x e. X , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) ) | 
						
							| 8 |  | sylow3lem2.k |  |-  ( ph -> K e. ( P pSyl G ) ) | 
						
							| 9 |  | sylow3lem2.h |  |-  H = { u e. X | ( u .(+) K ) = K } | 
						
							| 10 |  | sylow3lem2.n |  |-  N = { x e. X | A. y e. X ( ( x .+ y ) e. K <-> ( y .+ x ) e. K ) } | 
						
							| 11 |  | pwfi |  |-  ( X e. Fin <-> ~P X e. Fin ) | 
						
							| 12 | 3 11 | sylib |  |-  ( ph -> ~P X e. Fin ) | 
						
							| 13 |  | slwsubg |  |-  ( x e. ( P pSyl G ) -> x e. ( SubGrp ` G ) ) | 
						
							| 14 | 1 | subgss |  |-  ( x e. ( SubGrp ` G ) -> x C_ X ) | 
						
							| 15 | 13 14 | syl |  |-  ( x e. ( P pSyl G ) -> x C_ X ) | 
						
							| 16 | 13 15 | elpwd |  |-  ( x e. ( P pSyl G ) -> x e. ~P X ) | 
						
							| 17 | 16 | ssriv |  |-  ( P pSyl G ) C_ ~P X | 
						
							| 18 |  | ssfi |  |-  ( ( ~P X e. Fin /\ ( P pSyl G ) C_ ~P X ) -> ( P pSyl G ) e. Fin ) | 
						
							| 19 | 12 17 18 | sylancl |  |-  ( ph -> ( P pSyl G ) e. Fin ) | 
						
							| 20 |  | hashcl |  |-  ( ( P pSyl G ) e. Fin -> ( # ` ( P pSyl G ) ) e. NN0 ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( # ` ( P pSyl G ) ) e. NN0 ) | 
						
							| 22 | 21 | nn0cnd |  |-  ( ph -> ( # ` ( P pSyl G ) ) e. CC ) | 
						
							| 23 | 10 1 5 | nmzsubg |  |-  ( G e. Grp -> N e. ( SubGrp ` G ) ) | 
						
							| 24 |  | eqid |  |-  ( G ~QG N ) = ( G ~QG N ) | 
						
							| 25 | 1 24 | eqger |  |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er X ) | 
						
							| 26 | 2 23 25 | 3syl |  |-  ( ph -> ( G ~QG N ) Er X ) | 
						
							| 27 | 26 | qsss |  |-  ( ph -> ( X /. ( G ~QG N ) ) C_ ~P X ) | 
						
							| 28 | 12 27 | ssfid |  |-  ( ph -> ( X /. ( G ~QG N ) ) e. Fin ) | 
						
							| 29 |  | hashcl |  |-  ( ( X /. ( G ~QG N ) ) e. Fin -> ( # ` ( X /. ( G ~QG N ) ) ) e. NN0 ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) e. NN0 ) | 
						
							| 31 | 30 | nn0cnd |  |-  ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) e. CC ) | 
						
							| 32 | 2 23 | syl |  |-  ( ph -> N e. ( SubGrp ` G ) ) | 
						
							| 33 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 34 | 33 | subg0cl |  |-  ( N e. ( SubGrp ` G ) -> ( 0g ` G ) e. N ) | 
						
							| 35 |  | ne0i |  |-  ( ( 0g ` G ) e. N -> N =/= (/) ) | 
						
							| 36 | 32 34 35 | 3syl |  |-  ( ph -> N =/= (/) ) | 
						
							| 37 | 1 | subgss |  |-  ( N e. ( SubGrp ` G ) -> N C_ X ) | 
						
							| 38 | 2 23 37 | 3syl |  |-  ( ph -> N C_ X ) | 
						
							| 39 | 3 38 | ssfid |  |-  ( ph -> N e. Fin ) | 
						
							| 40 |  | hashnncl |  |-  ( N e. Fin -> ( ( # ` N ) e. NN <-> N =/= (/) ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> ( ( # ` N ) e. NN <-> N =/= (/) ) ) | 
						
							| 42 | 36 41 | mpbird |  |-  ( ph -> ( # ` N ) e. NN ) | 
						
							| 43 | 42 | nncnd |  |-  ( ph -> ( # ` N ) e. CC ) | 
						
							| 44 | 42 | nnne0d |  |-  ( ph -> ( # ` N ) =/= 0 ) | 
						
							| 45 | 1 2 3 4 5 6 7 | sylow3lem1 |  |-  ( ph -> .(+) e. ( G GrpAct ( P pSyl G ) ) ) | 
						
							| 46 |  | eqid |  |-  ( G ~QG H ) = ( G ~QG H ) | 
						
							| 47 |  | eqid |  |-  { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } = { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } | 
						
							| 48 | 1 9 46 47 | orbsta2 |  |-  ( ( ( .(+) e. ( G GrpAct ( P pSyl G ) ) /\ K e. ( P pSyl G ) ) /\ X e. Fin ) -> ( # ` X ) = ( ( # ` [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } ) x. ( # ` H ) ) ) | 
						
							| 49 | 45 8 3 48 | syl21anc |  |-  ( ph -> ( # ` X ) = ( ( # ` [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } ) x. ( # ` H ) ) ) | 
						
							| 50 | 1 24 32 3 | lagsubg2 |  |-  ( ph -> ( # ` X ) = ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) | 
						
							| 51 | 47 1 | gaorber |  |-  ( .(+) e. ( G GrpAct ( P pSyl G ) ) -> { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } Er ( P pSyl G ) ) | 
						
							| 52 | 45 51 | syl |  |-  ( ph -> { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } Er ( P pSyl G ) ) | 
						
							| 53 | 52 | ecss |  |-  ( ph -> [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } C_ ( P pSyl G ) ) | 
						
							| 54 | 8 | adantr |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> K e. ( P pSyl G ) ) | 
						
							| 55 |  | simpr |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> h e. ( P pSyl G ) ) | 
						
							| 56 | 3 | adantr |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> X e. Fin ) | 
						
							| 57 | 1 56 55 54 5 6 | sylow2 |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> E. u e. X h = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 58 |  | eqcom |  |-  ( ( u .(+) K ) = h <-> h = ( u .(+) K ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ( ph /\ h e. ( P pSyl G ) ) /\ u e. X ) -> u e. X ) | 
						
							| 60 | 54 | adantr |  |-  ( ( ( ph /\ h e. ( P pSyl G ) ) /\ u e. X ) -> K e. ( P pSyl G ) ) | 
						
							| 61 |  | mptexg |  |-  ( K e. ( P pSyl G ) -> ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) | 
						
							| 62 |  | rnexg |  |-  ( ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V -> ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) | 
						
							| 63 | 60 61 62 | 3syl |  |-  ( ( ( ph /\ h e. ( P pSyl G ) ) /\ u e. X ) -> ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) | 
						
							| 64 |  | simpr |  |-  ( ( x = u /\ y = K ) -> y = K ) | 
						
							| 65 |  | simpl |  |-  ( ( x = u /\ y = K ) -> x = u ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( x = u /\ y = K ) -> ( x .+ z ) = ( u .+ z ) ) | 
						
							| 67 | 66 65 | oveq12d |  |-  ( ( x = u /\ y = K ) -> ( ( x .+ z ) .- x ) = ( ( u .+ z ) .- u ) ) | 
						
							| 68 | 64 67 | mpteq12dv |  |-  ( ( x = u /\ y = K ) -> ( z e. y |-> ( ( x .+ z ) .- x ) ) = ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 69 | 68 | rneqd |  |-  ( ( x = u /\ y = K ) -> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 70 | 69 7 | ovmpoga |  |-  ( ( u e. X /\ K e. ( P pSyl G ) /\ ran ( z e. K |-> ( ( u .+ z ) .- u ) ) e. _V ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 71 | 59 60 63 70 | syl3anc |  |-  ( ( ( ph /\ h e. ( P pSyl G ) ) /\ u e. X ) -> ( u .(+) K ) = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) | 
						
							| 72 | 71 | eqeq2d |  |-  ( ( ( ph /\ h e. ( P pSyl G ) ) /\ u e. X ) -> ( h = ( u .(+) K ) <-> h = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) | 
						
							| 73 | 58 72 | bitrid |  |-  ( ( ( ph /\ h e. ( P pSyl G ) ) /\ u e. X ) -> ( ( u .(+) K ) = h <-> h = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) | 
						
							| 74 | 73 | rexbidva |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> ( E. u e. X ( u .(+) K ) = h <-> E. u e. X h = ran ( z e. K |-> ( ( u .+ z ) .- u ) ) ) ) | 
						
							| 75 | 57 74 | mpbird |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> E. u e. X ( u .(+) K ) = h ) | 
						
							| 76 | 47 | gaorb |  |-  ( K { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } h <-> ( K e. ( P pSyl G ) /\ h e. ( P pSyl G ) /\ E. u e. X ( u .(+) K ) = h ) ) | 
						
							| 77 | 54 55 75 76 | syl3anbrc |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> K { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } h ) | 
						
							| 78 |  | elecg |  |-  ( ( h e. ( P pSyl G ) /\ K e. ( P pSyl G ) ) -> ( h e. [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } <-> K { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } h ) ) | 
						
							| 79 | 55 54 78 | syl2anc |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> ( h e. [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } <-> K { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } h ) ) | 
						
							| 80 | 77 79 | mpbird |  |-  ( ( ph /\ h e. ( P pSyl G ) ) -> h e. [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } ) | 
						
							| 81 | 53 80 | eqelssd |  |-  ( ph -> [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } = ( P pSyl G ) ) | 
						
							| 82 | 81 | fveq2d |  |-  ( ph -> ( # ` [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } ) = ( # ` ( P pSyl G ) ) ) | 
						
							| 83 | 1 2 3 4 5 6 7 8 9 10 | sylow3lem2 |  |-  ( ph -> H = N ) | 
						
							| 84 | 83 | fveq2d |  |-  ( ph -> ( # ` H ) = ( # ` N ) ) | 
						
							| 85 | 82 84 | oveq12d |  |-  ( ph -> ( ( # ` [ K ] { <. x , y >. | ( { x , y } C_ ( P pSyl G ) /\ E. g e. X ( g .(+) x ) = y ) } ) x. ( # ` H ) ) = ( ( # ` ( P pSyl G ) ) x. ( # ` N ) ) ) | 
						
							| 86 | 49 50 85 | 3eqtr3rd |  |-  ( ph -> ( ( # ` ( P pSyl G ) ) x. ( # ` N ) ) = ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) | 
						
							| 87 | 22 31 43 44 86 | mulcan2ad |  |-  ( ph -> ( # ` ( P pSyl G ) ) = ( # ` ( X /. ( G ~QG N ) ) ) ) |