Metamath Proof Explorer


Theorem lagsubg2

Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses lagsubg.1 X=BaseG
lagsubg.2 ˙=G~QGY
lagsubg.3 φYSubGrpG
lagsubg.4 φXFin
Assertion lagsubg2 φX=X/˙Y

Proof

Step Hyp Ref Expression
1 lagsubg.1 X=BaseG
2 lagsubg.2 ˙=G~QGY
3 lagsubg.3 φYSubGrpG
4 lagsubg.4 φXFin
5 1 2 eqger YSubGrpG˙ErX
6 3 5 syl φ˙ErX
7 6 4 qshash φX=xX/˙x
8 1 2 eqgen YSubGrpGxX/˙Yx
9 3 8 sylan φxX/˙Yx
10 1 subgss YSubGrpGYX
11 3 10 syl φYX
12 4 11 ssfid φYFin
13 12 adantr φxX/˙YFin
14 4 adantr φxX/˙XFin
15 6 qsss φX/˙𝒫X
16 15 sselda φxX/˙x𝒫X
17 16 elpwid φxX/˙xX
18 14 17 ssfid φxX/˙xFin
19 hashen YFinxFinY=xYx
20 13 18 19 syl2anc φxX/˙Y=xYx
21 9 20 mpbird φxX/˙Y=x
22 21 sumeq2dv φxX/˙Y=xX/˙x
23 pwfi XFin𝒫XFin
24 4 23 sylib φ𝒫XFin
25 24 15 ssfid φX/˙Fin
26 hashcl YFinY0
27 12 26 syl φY0
28 27 nn0cnd φY
29 fsumconst X/˙FinYxX/˙Y=X/˙Y
30 25 28 29 syl2anc φxX/˙Y=X/˙Y
31 7 22 30 3eqtr2d φX=X/˙Y