Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lagsubg.1 | |
|
Assertion | lagsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lagsubg.1 | |
|
2 | simpr | |
|
3 | pwfi | |
|
4 | 2 3 | sylib | |
5 | eqid | |
|
6 | 1 5 | eqger | |
7 | 6 | adantr | |
8 | 7 | qsss | |
9 | 4 8 | ssfid | |
10 | hashcl | |
|
11 | 9 10 | syl | |
12 | 11 | nn0zd | |
13 | id | |
|
14 | 1 | subgss | |
15 | ssfi | |
|
16 | 13 14 15 | syl2anr | |
17 | hashcl | |
|
18 | 16 17 | syl | |
19 | 18 | nn0zd | |
20 | dvdsmul2 | |
|
21 | 12 19 20 | syl2anc | |
22 | simpl | |
|
23 | 1 5 22 2 | lagsubg2 | |
24 | 21 23 | breqtrrd | |