Metamath Proof Explorer


Theorem lagsubg

Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis lagsubg.1 X=BaseG
Assertion lagsubg YSubGrpGXFinYX

Proof

Step Hyp Ref Expression
1 lagsubg.1 X=BaseG
2 simpr YSubGrpGXFinXFin
3 pwfi XFin𝒫XFin
4 2 3 sylib YSubGrpGXFin𝒫XFin
5 eqid G~QGY=G~QGY
6 1 5 eqger YSubGrpGG~QGYErX
7 6 adantr YSubGrpGXFinG~QGYErX
8 7 qsss YSubGrpGXFinX/G~QGY𝒫X
9 4 8 ssfid YSubGrpGXFinX/G~QGYFin
10 hashcl X/G~QGYFinX/G~QGY0
11 9 10 syl YSubGrpGXFinX/G~QGY0
12 11 nn0zd YSubGrpGXFinX/G~QGY
13 id XFinXFin
14 1 subgss YSubGrpGYX
15 ssfi XFinYXYFin
16 13 14 15 syl2anr YSubGrpGXFinYFin
17 hashcl YFinY0
18 16 17 syl YSubGrpGXFinY0
19 18 nn0zd YSubGrpGXFinY
20 dvdsmul2 X/G~QGYYYX/G~QGYY
21 12 19 20 syl2anc YSubGrpGXFinYX/G~QGYY
22 simpl YSubGrpGXFinYSubGrpG
23 1 5 22 2 lagsubg2 YSubGrpGXFinX=X/G~QGYY
24 21 23 breqtrrd YSubGrpGXFinYX