Metamath Proof Explorer


Theorem orbsta2

Description: Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses orbsta2.x X=BaseG
orbsta2.h H=uX|u˙A=A
orbsta2.r ˙=G~QGH
orbsta2.o O=xy|xyYgXg˙x=y
Assertion orbsta2 ˙GGrpActYAYXFinX=AOH

Proof

Step Hyp Ref Expression
1 orbsta2.x X=BaseG
2 orbsta2.h H=uX|u˙A=A
3 orbsta2.r ˙=G~QGH
4 orbsta2.o O=xy|xyYgXg˙x=y
5 1 2 gastacl ˙GGrpActYAYHSubGrpG
6 5 adantr ˙GGrpActYAYXFinHSubGrpG
7 simpr ˙GGrpActYAYXFinXFin
8 1 3 6 7 lagsubg2 ˙GGrpActYAYXFinX=X/˙H
9 pwfi XFin𝒫XFin
10 7 9 sylib ˙GGrpActYAYXFin𝒫XFin
11 1 3 eqger HSubGrpG˙ErX
12 6 11 syl ˙GGrpActYAYXFin˙ErX
13 12 qsss ˙GGrpActYAYXFinX/˙𝒫X
14 10 13 ssfid ˙GGrpActYAYXFinX/˙Fin
15 eqid rankXk˙k˙A=rankXk˙k˙A
16 1 2 3 15 4 orbsta ˙GGrpActYAYrankXk˙k˙A:X/˙1-1 ontoAO
17 16 adantr ˙GGrpActYAYXFinrankXk˙k˙A:X/˙1-1 ontoAO
18 14 17 hasheqf1od ˙GGrpActYAYXFinX/˙=AO
19 18 oveq1d ˙GGrpActYAYXFinX/˙H=AOH
20 8 19 eqtrd ˙GGrpActYAYXFinX=AOH