| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gasta.1 |
|
| 2 |
|
gasta.2 |
|
| 3 |
|
orbsta.r |
|
| 4 |
|
orbsta.f |
|
| 5 |
|
orbsta.o |
|
| 6 |
1 2 3 4
|
orbstafun |
|
| 7 |
|
simpr |
|
| 8 |
7
|
adantr |
|
| 9 |
1
|
gaf |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
11 12 8
|
fovcdmd |
|
| 14 |
|
eqid |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
16
|
rspcev |
|
| 18 |
12 14 17
|
sylancl |
|
| 19 |
5
|
gaorb |
|
| 20 |
8 13 18 19
|
syl3anbrc |
|
| 21 |
|
ovex |
|
| 22 |
|
elecg |
|
| 23 |
21 8 22
|
sylancr |
|
| 24 |
20 23
|
mpbird |
|
| 25 |
1 2
|
gastacl |
|
| 26 |
1 3
|
eqger |
|
| 27 |
25 26
|
syl |
|
| 28 |
1
|
fvexi |
|
| 29 |
28
|
a1i |
|
| 30 |
4 24 27 29
|
qliftf |
|
| 31 |
6 30
|
mpbid |
|
| 32 |
|
eqid |
|
| 33 |
|
fveqeq2 |
|
| 34 |
|
eqeq1 |
|
| 35 |
33 34
|
imbi12d |
|
| 36 |
35
|
ralbidv |
|
| 37 |
|
fveq2 |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
|
eqeq2 |
|
| 40 |
38 39
|
imbi12d |
|
| 41 |
1 2 3 4
|
orbstaval |
|
| 42 |
41
|
adantrr |
|
| 43 |
1 2 3 4
|
orbstaval |
|
| 44 |
43
|
adantrl |
|
| 45 |
42 44
|
eqeq12d |
|
| 46 |
1 2 3
|
gastacos |
|
| 47 |
27
|
adantr |
|
| 48 |
|
simprl |
|
| 49 |
47 48
|
erth |
|
| 50 |
45 46 49
|
3bitr2d |
|
| 51 |
50
|
biimpd |
|
| 52 |
51
|
anassrs |
|
| 53 |
32 40 52
|
ectocld |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
32 36 54
|
ectocld |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
|
dff13 |
|
| 58 |
31 56 57
|
sylanbrc |
|
| 59 |
|
vex |
|
| 60 |
|
elecg |
|
| 61 |
59 7 60
|
sylancr |
|
| 62 |
5
|
gaorb |
|
| 63 |
61 62
|
bitrdi |
|
| 64 |
63
|
biimpa |
|
| 65 |
64
|
simp3d |
|
| 66 |
3
|
ovexi |
|
| 67 |
66
|
ecelqsi |
|
| 68 |
43
|
eqcomd |
|
| 69 |
|
fveq2 |
|
| 70 |
69
|
rspceeqv |
|
| 71 |
67 68 70
|
syl2an2 |
|
| 72 |
|
eqeq1 |
|
| 73 |
72
|
rexbidv |
|
| 74 |
71 73
|
syl5ibcom |
|
| 75 |
74
|
rexlimdva |
|
| 76 |
75
|
imp |
|
| 77 |
65 76
|
syldan |
|
| 78 |
77
|
ralrimiva |
|
| 79 |
|
dffo3 |
|
| 80 |
31 78 79
|
sylanbrc |
|
| 81 |
|
df-f1o |
|
| 82 |
58 80 81
|
sylanbrc |
|