Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
|
2 |
|
gasta.2 |
|
3 |
|
orbsta.r |
|
4 |
|
orbsta.f |
|
5 |
|
orbsta.o |
|
6 |
1 2 3 4
|
orbstafun |
|
7 |
|
simpr |
|
8 |
7
|
adantr |
|
9 |
1
|
gaf |
|
10 |
9
|
adantr |
|
11 |
10
|
adantr |
|
12 |
|
simpr |
|
13 |
11 12 8
|
fovrnd |
|
14 |
|
eqid |
|
15 |
|
oveq1 |
|
16 |
15
|
eqeq1d |
|
17 |
16
|
rspcev |
|
18 |
12 14 17
|
sylancl |
|
19 |
5
|
gaorb |
|
20 |
8 13 18 19
|
syl3anbrc |
|
21 |
|
ovex |
|
22 |
|
elecg |
|
23 |
21 8 22
|
sylancr |
|
24 |
20 23
|
mpbird |
|
25 |
1 2
|
gastacl |
|
26 |
1 3
|
eqger |
|
27 |
25 26
|
syl |
|
28 |
1
|
fvexi |
|
29 |
28
|
a1i |
|
30 |
4 24 27 29
|
qliftf |
|
31 |
6 30
|
mpbid |
|
32 |
|
eqid |
|
33 |
|
fveqeq2 |
|
34 |
|
eqeq1 |
|
35 |
33 34
|
imbi12d |
|
36 |
35
|
ralbidv |
|
37 |
|
fveq2 |
|
38 |
37
|
eqeq2d |
|
39 |
|
eqeq2 |
|
40 |
38 39
|
imbi12d |
|
41 |
1 2 3 4
|
orbstaval |
|
42 |
41
|
adantrr |
|
43 |
1 2 3 4
|
orbstaval |
|
44 |
43
|
adantrl |
|
45 |
42 44
|
eqeq12d |
|
46 |
1 2 3
|
gastacos |
|
47 |
27
|
adantr |
|
48 |
|
simprl |
|
49 |
47 48
|
erth |
|
50 |
45 46 49
|
3bitr2d |
|
51 |
50
|
biimpd |
|
52 |
51
|
anassrs |
|
53 |
32 40 52
|
ectocld |
|
54 |
53
|
ralrimiva |
|
55 |
32 36 54
|
ectocld |
|
56 |
55
|
ralrimiva |
|
57 |
|
dff13 |
|
58 |
31 56 57
|
sylanbrc |
|
59 |
|
vex |
|
60 |
|
elecg |
|
61 |
59 7 60
|
sylancr |
|
62 |
5
|
gaorb |
|
63 |
61 62
|
bitrdi |
|
64 |
63
|
biimpa |
|
65 |
64
|
simp3d |
|
66 |
3
|
ovexi |
|
67 |
66
|
ecelqsi |
|
68 |
43
|
eqcomd |
|
69 |
|
fveq2 |
|
70 |
69
|
rspceeqv |
|
71 |
67 68 70
|
syl2an2 |
|
72 |
|
eqeq1 |
|
73 |
72
|
rexbidv |
|
74 |
71 73
|
syl5ibcom |
|
75 |
74
|
rexlimdva |
|
76 |
75
|
imp |
|
77 |
65 76
|
syldan |
|
78 |
77
|
ralrimiva |
|
79 |
|
dffo3 |
|
80 |
31 78 79
|
sylanbrc |
|
81 |
|
df-f1o |
|
82 |
58 80 81
|
sylanbrc |
|