Metamath Proof Explorer


Theorem orbstafun

Description: Existence and uniqueness for the function of orbsta . (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses gasta.1 X=BaseG
gasta.2 H=uX|u˙A=A
orbsta.r ˙=G~QGH
orbsta.f F=rankXk˙k˙A
Assertion orbstafun ˙GGrpActYAYFunF

Proof

Step Hyp Ref Expression
1 gasta.1 X=BaseG
2 gasta.2 H=uX|u˙A=A
3 orbsta.r ˙=G~QGH
4 orbsta.f F=rankXk˙k˙A
5 ovexd ˙GGrpActYAYkXk˙AV
6 1 2 gastacl ˙GGrpActYAYHSubGrpG
7 1 3 eqger HSubGrpG˙ErX
8 6 7 syl ˙GGrpActYAY˙ErX
9 1 fvexi XV
10 9 a1i ˙GGrpActYAYXV
11 oveq1 k=hk˙A=h˙A
12 simpr ˙GGrpActYAYk˙hk˙h
13 subgrcl HSubGrpGGGrp
14 1 subgss HSubGrpGHX
15 eqid invgG=invgG
16 eqid +G=+G
17 1 15 16 3 eqgval GGrpHXk˙hkXhXinvgGk+GhH
18 13 14 17 syl2anc HSubGrpGk˙hkXhXinvgGk+GhH
19 6 18 syl ˙GGrpActYAYk˙hkXhXinvgGk+GhH
20 19 biimpa ˙GGrpActYAYk˙hkXhXinvgGk+GhH
21 20 simp1d ˙GGrpActYAYk˙hkX
22 20 simp2d ˙GGrpActYAYk˙hhX
23 21 22 jca ˙GGrpActYAYk˙hkXhX
24 1 2 3 gastacos ˙GGrpActYAYkXhXk˙hk˙A=h˙A
25 23 24 syldan ˙GGrpActYAYk˙hk˙hk˙A=h˙A
26 12 25 mpbid ˙GGrpActYAYk˙hk˙A=h˙A
27 4 5 8 10 11 26 qliftfund ˙GGrpActYAYFunF