| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gasta.1 |
|- X = ( Base ` G ) |
| 2 |
|
gasta.2 |
|- H = { u e. X | ( u .(+) A ) = A } |
| 3 |
|
orbsta.r |
|- .~ = ( G ~QG H ) |
| 4 |
|
orbsta.f |
|- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
| 5 |
|
ovexd |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. _V ) |
| 6 |
1 2
|
gastacl |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> H e. ( SubGrp ` G ) ) |
| 7 |
1 3
|
eqger |
|- ( H e. ( SubGrp ` G ) -> .~ Er X ) |
| 8 |
6 7
|
syl |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .~ Er X ) |
| 9 |
1
|
fvexi |
|- X e. _V |
| 10 |
9
|
a1i |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> X e. _V ) |
| 11 |
|
oveq1 |
|- ( k = h -> ( k .(+) A ) = ( h .(+) A ) ) |
| 12 |
|
simpr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> k .~ h ) |
| 13 |
|
subgrcl |
|- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
| 14 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ X ) |
| 15 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 16 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 17 |
1 15 16 3
|
eqgval |
|- ( ( G e. Grp /\ H C_ X ) -> ( k .~ h <-> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) ) |
| 18 |
13 14 17
|
syl2anc |
|- ( H e. ( SubGrp ` G ) -> ( k .~ h <-> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) ) |
| 19 |
6 18
|
syl |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( k .~ h <-> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) ) |
| 20 |
19
|
biimpa |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) |
| 21 |
20
|
simp1d |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> k e. X ) |
| 22 |
20
|
simp2d |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> h e. X ) |
| 23 |
21 22
|
jca |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k e. X /\ h e. X ) ) |
| 24 |
1 2 3
|
gastacos |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( k e. X /\ h e. X ) ) -> ( k .~ h <-> ( k .(+) A ) = ( h .(+) A ) ) ) |
| 25 |
23 24
|
syldan |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k .~ h <-> ( k .(+) A ) = ( h .(+) A ) ) ) |
| 26 |
12 25
|
mpbid |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k .(+) A ) = ( h .(+) A ) ) |
| 27 |
4 5 8 10 11 26
|
qliftfund |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) |