| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erth.1 |
|
| 2 |
|
erth.2 |
|
| 3 |
1
|
ersymb |
|
| 4 |
3
|
biimpa |
|
| 5 |
1
|
ertr |
|
| 6 |
5
|
impl |
|
| 7 |
4 6
|
syldanl |
|
| 8 |
1
|
ertr |
|
| 9 |
8
|
impl |
|
| 10 |
7 9
|
impbida |
|
| 11 |
|
vex |
|
| 12 |
2
|
adantr |
|
| 13 |
|
elecg |
|
| 14 |
11 12 13
|
sylancr |
|
| 15 |
|
errel |
|
| 16 |
1 15
|
syl |
|
| 17 |
|
brrelex2 |
|
| 18 |
16 17
|
sylan |
|
| 19 |
|
elecg |
|
| 20 |
11 18 19
|
sylancr |
|
| 21 |
10 14 20
|
3bitr4d |
|
| 22 |
21
|
eqrdv |
|
| 23 |
1
|
adantr |
|
| 24 |
1 2
|
erref |
|
| 25 |
24
|
adantr |
|
| 26 |
2
|
adantr |
|
| 27 |
|
elecg |
|
| 28 |
26 26 27
|
syl2anc |
|
| 29 |
25 28
|
mpbird |
|
| 30 |
|
simpr |
|
| 31 |
29 30
|
eleqtrd |
|
| 32 |
23 30
|
ereldm |
|
| 33 |
26 32
|
mpbid |
|
| 34 |
|
elecg |
|
| 35 |
26 33 34
|
syl2anc |
|
| 36 |
31 35
|
mpbid |
|
| 37 |
23 36
|
ersym |
|
| 38 |
22 37
|
impbida |
|