Metamath Proof Explorer


Theorem ereldm

Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ereldm.1 φRErX
ereldm.2 φAR=BR
Assertion ereldm φAXBX

Proof

Step Hyp Ref Expression
1 ereldm.1 φRErX
2 ereldm.2 φAR=BR
3 2 neeq1d φARBR
4 ecdmn0 AdomRAR
5 ecdmn0 BdomRBR
6 3 4 5 3bitr4g φAdomRBdomR
7 erdm RErXdomR=X
8 1 7 syl φdomR=X
9 8 eleq2d φAdomRAX
10 8 eleq2d φBdomRBX
11 6 9 10 3bitr3d φAXBX