Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ereldm.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| ereldm.2 | ⊢ ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) | ||
| Assertion | ereldm | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ereldm.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 2 | ereldm.2 | ⊢ ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) | |
| 3 | 2 | neeq1d | ⊢ ( 𝜑 → ( [ 𝐴 ] 𝑅 ≠ ∅ ↔ [ 𝐵 ] 𝑅 ≠ ∅ ) ) |
| 4 | ecdmn0 | ⊢ ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ ) | |
| 5 | ecdmn0 | ⊢ ( 𝐵 ∈ dom 𝑅 ↔ [ 𝐵 ] 𝑅 ≠ ∅ ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅 ) ) |
| 7 | erdm | ⊢ ( 𝑅 Er 𝑋 → dom 𝑅 = 𝑋 ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → dom 𝑅 = 𝑋 ) |
| 9 | 8 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝑅 ↔ 𝐴 ∈ 𝑋 ) ) |
| 10 | 8 | eleq2d | ⊢ ( 𝜑 → ( 𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝑋 ) ) |
| 11 | 6 9 10 | 3bitr3d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) |